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ABSTRACT  
 

Distributed Virtual Environment (DVE) is a shared application consisting many objects, which can be accessed 

by many users. There have been many methods used to scale the DVE such as dividing simulation workload, 

dynamic load balancing among servers, and creating alternative architectures. However, they may not 

accommodate many objects and users. In this paper, we explore all approaches used to scale the DVE and then 

determine the characteristics of the existing approaches. With those characteristics, we compared existing 

approaches based on three parameters: the number of simulation per region, implementation, and the number 

of objects managed by simulator. The results show that all approaches use the same viewpoint, called present 

viewpoint, in developing the DVE. It views DVE as a world where all objects and activities are managed by a 

simulator. The results also show that this viewpoint contributes in terms of limitations of the current DVEs 

performance. In response to these results, we further propose a new viewpoint, called object-based viewpoint, to 

generate object-based simulators architecture. The experiment results show that our proposed architecture can 

provide a large scale DVE with better performances than the previous architectures. 

 

Keywords: Distributed virtual environment, DVE scalability, Object-based viewpoint, Object-based simulators 
 

 

1.0 INTRODUCTION  

 

Virtual Environment (VE) as a simulation application is widely studied and used for the development of 

computer generated synthetic environments and analysis purposes. To involve many users in a VE, Distributed 

Virtual Environment (DVE) is often needed. Many users in separated places can come together to collaborate in 

a VE. For instance, they can use DVE to collaborate virtually with each other to carry out a work such as 

surgery training, automotive assembly simulations, etc. They can also go to a virtual music concert or attend a 

virtual classroom. 

 

Virtual world is one of the most popular applications of DVE. For instance is Second Life [1], which is the state 

of the art of virtual worlds. On May 2012, the world of Second Life was made up of thousands of regions, which 

if they are linked together will spread over 1,962.93 km
2
 of virtual lands [2]. The world consists of avatars, 

terrains, trees, buildings, and other objects. Each region is a process run by a simulator. With Second Life, users 

can enjoy the 3D scenery, walk, drive, interact with other avatars, play games, or create objects. In fact, 99% of 

objects in Second Life are user created [3]. This virtual world is often used commercially by users to sell their 

properties to others. 

 

Therefore, DVEs may have a very large number of objects and users at one time and this can easily overload a 

fast network, as well as impose huge processing requirements at the server and client computers. As computing 

resources are limited, there are obvious problems that arise once the number of objects and users in a simulation 

reach a certain limit. If no special mechanisms are provided, one may expect a DVE to produce undesirable 

effects such as choppy rendering, and loss of interactivity, due to lack of processing power to handle the 

increasing load. 

 

Scaling a DVE depends on two aspects, i.e. scaling the number of concurrent users interacting with each other, 

or scaling the scene complexity (number of objects and the complexity of their behaviours and appearances). 

Several methods have been generated to scale DVEs such as dividing simulation workload [4-6], using dynamic 

load balancing among servers [7], and creating alternative architectures [8-11]. Scaling the DVEs can be done at 

the server‟s side (using cluster or cloud computing) or the client‟s side (using peer-to-peer model). However, 
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these techniques are not enough to accommodate DVEs with huge number of objects and thousands of 

concurrent users. Other than that, increasing the number of objects and users decreases the performance of DVE. 

 

In this paper, we determine the characteristics of the present DVEs. These characteristics are then used to 

determine the present viewpoint to develop the DVEs. To address the limitation of current approaches, we 

propose a novel viewpoint, called object-based viewpoint, to generate a new DVE architecture. The novelty of 

the proposed approach is that, unlike the existing viewpoint approaches, the proposed object-based viewpoint 

views the DVE as a world that consists of many objects and each of them is able to manage itself for the 

appearances and behaviours as well as interaction with other objects.  

 

In summary, the contributions of this paper are described as follows:  

a. We study characteristics of the current approaches used to develop DVE. With these characteristics, we are 

able to find the present viewpoint in scaling the DVE.  

b. We introduce object-based viewpoint, a new viewpoint to generate a large scale distributed virtual 

environment architecture, called object-based simulators architecture. 

c. We do experiments and prove that our proposed architecture can provide a large scale DVE with better 

performances than the previous architectures. 

 

The rest of the paper is organised as follows. Section 2 presents the current approaches used by researches in 

scaling the DVE. The characteristics of the current approaches are also described in this section. Section 3 

presents the novel viewpoint to scale the DVE. The experiment results using novel DVE architecture are 

described in Section 4. Finally, Section 5 and Section 6 give some conclusive remarks and future work, 

respectively. 

 

2.0 RELATED WORKS 

 

In current DVEs, entities and activities are managed by a simulator. When the simulator workload increases, the 

current approaches use two techniques to scale the DVE i.e. splitting the region and separating the component of 

DVE simulator. In the following section, we describe these techniques. 

 

2.1 Splitting the Region 

 

To decrease the simulation workload, this approach divides the region into smaller areas and each area is 

simulated by a simulator. Thus, the simulation workload of each area becomes smaller. 

 

 
Fig. 1: Simulator components of simulator-centric architecture 

 

Second Life as a famous DVE application uses this approach. The world is divided into a large number of small 

regions. Each region has area of 256m x 256m and owned by exactly one simulation server. OpenSim [12], an 

open source DVE that has a system‟s architecture similar to and compatible to Second Life architecture, also 

uses this approach. Both Second Life and OpenSim have simulator-centric architecture, and simulator for each 

region is illustrated by Fig. 1. In this figure, all simulator components i.e. scene, physics engine, client manager, 

etc run in a process that has responsibility to manage all entities and activities in a region. 

 

Yamamoto et al. [13] used splitting the region approach to split the region. They divided the game world into 

identically sized regions for management of resources and propagation of messages. Lee [14] divided the DVE 

into even sized regions determined by the number of servers processing data, e.g. 16 grids per server, with 16 

servers, for a total of 256 regions. Jardin and Zappala [15] proposed a hybrid architecture using fixed regions to 

limit propagation of avatar movement messages. De Vleeschauwer et al. [16], Ahmed and Shirmohammadi [17] 

exploited the concept of microcells, which have a relatively small size with respect to the entire VE dimension.  
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Most current Massively Multiplayer Online Games (MMOGs) also used this static region-partitioning model. 

To prevent server crashes, game operators have resolved to use sharding [18]. They make replicas of 

particularly popular region. The World of Warcraft [19], the most popular MMOG also used this sharding 

method.  

 

Sometimes, regions are dynamically rather than statically created. Liu and Bowman [7] used binary space 

partitioning (BSP) to partition the world in order to scale the DVE flexibly by dynamic allocation of hardware to 

match load. Although this method was effective in balancing workload dynamically, it had several limitations 

and suffered from high overhead of workload migration. A similar approach was also proposed by introducing 

dynamic and fair distribution of load based on physical partitioning of a virtual space [5]. Whenever a server 

exceeds its maximum capacity, a new server was added and the region load was shared with it. 

 

To increase flexibility of resource allocation and address the over-provision problem when the peak load occurs, 

managing each DVE region can be integrated with cloud computing [20-23]. In a DVE cloud environment, 

virtual machine (VM) is allocated to serve clients of a region, instead of DVE server. Cloud computing follows 

the utility computing model based on a resource pay-per-rent model allowing customers to pay only the 

resources they actually use. Game operators may exploit clouds by requesting a large set of resources during 

peak hour and by releasing them when they are no longer needed. 

 

Peer-to-peer (P2P) is a new solution to scale up the DVE. Generally, it distributes the server roles to peers. Chan 

et al. [24] and Olanda et al. [25] proposed hybrid approaches where the world was divided into regions and each 

region was assigned to a peer belonging to a structured P2P overlay. Several approaches allow only those peers 

that satisfy particular requirements in term of hardware capability to manage part of the simulation. This special 

peer is referred as Super Peer (SP) and usually manages a region so that each peer in the region is connected to 

it. Chen and Muntz [26] used a SP to manage each hexagonal region while Kim et al. [27] and Buyukkaya et al 

[28] used a SP to manage a square and polygon region, respectively.  

 

Splitting the region can also be done by considering the Area of Interest (AOI). Several works such as Almashor 

et al. [29], and Carlini et al. [30] use Voronoi overlays to maintain AOI, which eases the identification of 

neighbours. In a Voronoi overlay network, each peer manages the space correspondent to its Voronoi region. 

Denault et al. [31], and Van Den Bossche et al. [32] treated regions as set of adjacent microcells. To improve 

the DVE performance, Ranjan and Zhao [33] and Carlini et al. [6] used the hybrid of P2P and Cloud 

architecture. 

 

2.2 Separating the Components 

 

It is the second approach used by researches to scale up the DVE. Even though the region has been split into 

sub-regions, the problem still occurred as the number of objects or users in a sub-region increase dramatically. 

To address the problem, the researches generate alternative architectures. Some simulator components are 

separated from the main simulator so that the workload of main simulator can decrease. The separated 

component does its tasks in independent process and then the results are sent to main simulator. 

 

 
Fig. 2: DSG architecture 
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Distributed Scene Graph (DSG) [10] uses this approach. It views the DVE operations in general as a collection 

of the “Scene” and the actors operating on the Scene through a Scene service layer (Fig. 2). Actually, DSG is 

inspired by Dakstar [8] that implements DVE logic as small transactional tasks distributed across servers. 

 

In Fig. 2, DSG separates the physics and script engine as well as client managers from the main simulator. Each 

actor is responsible to do its task when the simulation runs, and all actors are mediated by Scene. Each actor 

observes a part of the virtual world and executes operations to the objects in this part. The DSG architecture 

allows developer dynamically to distribute the load depending on the current situation in the world. For 

example, if at one place there are a lot of events, which involve many users, then it makes sense to dynamically 

allocate one server to perform user management tasks for that particular place and maybe just one more server 

to handle users in all other parts of the world. This allows one to efficiently reuse the hardware and thus 

decrease the cost of running a virtual world [9]. 

 

Another architecture is Sirikata [11, 34]. Sirikata‟s architecture splits the functionality of the platform into three 

concepts i.e. space management, object simulation, and content delivery, as shown by Fig. 3. It is different from 

the traditional approach where all objects together with their scripts and data are simulated on a single server or 

a cluster.  

 

 
 

Fig. 3: Sirikata architecture 

 

2.3 Characteristics of the Current Approaches 

 

Table 1 illustrates the characteristics of splitting the region and separating the component approach. In this table, 

we measure both approaches with three parameters i.e. the number of simulator per region, implementation, and 

the number of objects managed by simulator: 

 Number of simulator per region 

It represents the number of simulator used to manage a region in the DVE. 

 Implementation 

It describes the network used to run the simulation. 

 Number of objects managed by simulator   

It represents the number of objects handled by a simulator. For the second approach (separating the 

component approach), the value is measured for each simulator. 

 

Table 1: Characteristics of scalability approaches 

 

Parameters 

Scalability Approach 

Splitting the Region Separating the 

Component 

Number of simulator per 

region 
One Many 

Implementation CS, P2P CS, P2P 

Number of objects managed 

by simulator 
Many Many 

 

From Table 1, we note that all methods in both approaches can run on client server (CS) or peer-to-peer (P2P) 

network. The difference of both methods only occurs on the first parameter where the first approach has one 

simulator for a region whereas the second one has many simulators in managing the region. Increasing the 

number of simulator in the second approach is influenced by separating the simulator components from the main 

simulator. Even though both approaches have different number of simulator per region, but they have similarity 

in number of objects managed by each simulator i.e. more than one object. 
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We carried out an experiment that compared the CPU usage and memory allocation between splitting the region 

(SR) and separating the component (SC) approach for varying number of objects in DVE. The experiment was 

intended to measure the influence of the number of simulator in DVE with respect to the DVE performance. In 

SR, we used a simulator that managed many objects in a region. The simulator handled all objects appearances 

and behaviours. SC separated the physics engine from the simulator. Thus, there were two simulators: physics 

simulator and the main simulator handling all activities of the world except physics simulation. As shown by 

Fig. 4, the experiment result shows that the performance of the second approach (SC) is better than SR. The 

CPU usage of SC just tends to increase linearly while SR tends to increase quadratic. 

 
Fig. 4: CPU usage of both approaches 

 

 

 
Fig. 5: Memory allocation for both approaches 

 

The better performance of SC also occurs in the memory allocation for the simulator. As depicted by Fig. 5, the 

SC simulator uses less memory than SR for varying number of objects. The increasing number of object does 

not increase linearly the memory allocation of SC as occurred to SR. Based on both results, we note that using 

more simulators yields better DVE performance than using one simulator. In other words, separating the 

components approach is able to improve the performance of the splitting the region approach in order to scale 

up the DVE. 

 

3.0 PROPOSED OBJECT-BASED VIEWPOINT METHOD 

 

Splitting the region approach used to scale up the DVE still has many limitations. This approach makes user 

isolated from others. A user is only able to live in a small area of environment. If there are many objects and 

users in this area then the DVE performance degrades. Even though these limitations could be addressed by 

separating the component approach as discussed in the last section, the limitations still occur when the number 

of objects and users residing in an area increases. It will increase the workload of actors or object host in DSG 

or Sirikata, respectively. It means that addressing the DVE scalability problems is not sufficient with modifying 

the last architecture and then repairing its functionality or component. Hence, the viewpoint used by researches 

to develop current architectures should be further investigated to discover the core of the problem instead of its 

symptoms. 



Object-Based Viewpoint For Large-Scale Distributed Virtual Environment.  pp 301-317 

 

 

 

306 
Malaysian Journal of Computer Science.  Vol. 28(4), 2015 

  
 

 

 

Based on the characteristics of the current approaches as illustrated by Table 1, it is evident that all researches 

have similar viewpoint in developing the DVE architecture. They view DVE as a world that all activities and 

components are handled by a “something” (called simulator). When this simulator approaches its capacity limit 

in managing the world, the world has to be split into smaller sub-world and each of them is managed by instance 

of simulator. Another approach is separating the component of simulator to be an independent component in 

processing its task. 

 

 
Fig. 6: OpenSim architecture 

 

Fig. 6 shows the architecture of OpenSim. This architecture uses that viewpoint. All objects and users activities 

are handled by a simulator or process (OpenSim.exe). To improve the OpenSim performance, splitting the 

region approach drives the developers to divide the region, and separating the component approach separates the 

simulator components from the main simulator. Unfortunately, when workload in a region or scene increases 

dramatically, the workload of simulator also increases automatically. It is the main problem why increasing 

DVE complexity also decreases the performance of the DVE. 

 

To solve the problem, we should change the current viewpoint above. DVE does not consist of regions that need 

to be split into smaller areas, and it does not require separating one or more components from the main 

simulator when the simulator workload increases. 

 

3.1 Object-based Viewpoint 

 

To change the current architectures in providing large scale DVE, a new viewpoint has to be established. In the 

proposed viewpoint, we look at DVE as a collection of objects. Trees, animals, houses, boxes, avatars are 

examples of these objects. Several objects are static in the environment, and some of them are dynamic objects 

that are able to interact with other objects. Those objects compose the DVE and each is an independent process 

in the VE that can determine its appearances and behaviours in the environment. For example, an avatar is an 

object. Thus, avatar is a process in VE that has specific appearances and behaviours. How the avatar should 

walk, handshake, sit, and other activities are maintained by the process. The avatar may reside in any region or 

scene in virtual environment using those appearances and behaviours. The region just uses this process. This 

new viewpoint is called object-based viewpoint. 
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Fig. 7: DVE structure 

 

The object-based viewpoint is inspired by the real world environment. If we look at around, we can easily see 

person, trees, grass, buildings, animals etc. All of them are objects that compose the world and each has distinct 

appearances and behaviours controlled by the object itself. With the object-based viewpoint, the DVE can be 

illustrated by Fig. 7. It consists of several objects residing in universe and each is independent process and 

separated from other objects. In this paper, we use term of universe to show that objects reside in a continuous 

space, not a partitioned space as used by the current DVE architectures. A process handling the appearances and 

behaviours of an object is called object simulator or simulator for that object. 

 

 
Fig. 8: Simulator of both viewpoints 

 

Fig. 8 shows the difference between simulator used by the current and object-based viewpoints. The left side of 

this figure represents the current viewpoint where a simulator simulates many objects. In this case, we assume a 

simulator simulates M objects where M ≤ N. We use this assumption because a current DVE may consist of 

more than one simulator e.g. Second Life and OpenSim. Further, the right side of this figure shows the 

simulators which are based on the object-based viewpoint. It is new viewpoint to create a large-scale DVE 

architecture. A simulator simulates just one object residing in the VE. From Fig. 8, some advantages of object-

based viewpoint are as follows: 

 Object simulator is an independent process so that it can reside in distributed computers. Thus, it is scalable 

with the additional hardware. 

 Each object can be identified by its simulator ID rather than server ID. Therefore, the migration of 

simulator does not affect the overall simulation process. 

 The workload of object simulator is less than current DVE simulators. The increasing number of objects in 

DVE does not affect the simulator itself. It eliminates the workload distribution algorithm among servers as 

used by the current DVE. 
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Fig. 9: 1P1O architecture 

 

3.2 Object-based Simulators Architecture 

 

With object-based viewpoint in Section 3.1, in the proposed architecture, simulator is no longer a single process 

that controls many objects. Each object is treated as a process or simulator. Hence, this architecture is called 

1P1O model: one process for one object. This model makes object independent in managing itself. The 1P1O 

model has three components, i.e. object simulators, universe and content distribution network (CDN) as shown 

in Fig. 9.  

 

3.2.1 Object Simulator Component 

 

The core component of 1P1O model is simulators that comprise several object simulators. Object simulator is 

responsible to simulate the appearances and behaviours of the object. Fig. 9 shows that there are n object 

simulators simulating n objects in VE. The object simulator has two components used in managing an object: 

 Script engine 

It is used to run the object scripts that determine the appearances and behaviours of object. 

 Physics engine 

Physic engine runs the physics simulation of the object. It ensures that the object enforces physics laws. 

Examples are gravity pole, collision handling, etc. 

 

An object simulator is a process in DVE, allowing it to specify the behaviour and appearance of object and 

providing it access to the universe component. The viewer is an object in DVE so that it is also represented by a 

process. Different from other objects, the viewer is able to display the environment. A user in VE may be 

represented by avatar. One important thing is that each simulator can reside in different hardware since it is an 

independent process. Thus, it is scalable with the additional hardware. 

 

3.2.2 Universe Component 

 

The universe component in 1P1O model is responsible to determine what objects are in the environment. This 

component has similarity to the scene in DSG architecture and the space server in Sirikata architecture. It stores 

object properties in a VE such as object identifier, position, and physical properties. A given universe may be 

run by one or more computers (called universe server) which segment the geometric coordinates of the VE. 

Similar to object simulator, the universe component is scalable to the additional hardware. Since universe 

component stores the location and properties of objects, it is able to synchronize the objects position and 

properties among interested simulators. All object simulators send updates to universe, and universe 

disseminates those updates to interested simulators. Universe is also responsible to make an object know the 

nearest objects.  

 

3.2.3 Content Distribution Network 

 

Content Distribution Network (CDN) is similar to CDN component in the Sirikata architecture. It stores 

permanent data and delivers it to the other components. Meshes that are used to display objects are examples of 

... 
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the data stored on CDN. Viewers are able to download them to view the world. The CDN may be as simple as a 

web server. It really needs only to serve requests for files. 

 

4.0 RESULT AND DISCUSSION 

 

4.1 Experimental Setup 

 

Fig. 10 shows the 1P1O model that is implemented in CS (client-server) network. All object simulators reside in 

server(s). The universe is run on one or more servers, and so is CDN.  Clients are viewers that view the DVE 

and may interact with other objects. When a user moves in environment, object appearances and behaviours are 

managed by its simulator residing in a certain server, and the state updates are sent to universe. On a certain 

case, where the server capacity exceeds its limit, the migration of simulators to another server are done easily 

because the reference of an object is based on the object ID, not based on server ID. 

 

The objects used by these applications are boxes with varying sizes and masses. The application simulates the 

objects falling from a certain high to the ground and colliding with each other. The collision occurs between 

object and ground or among objects. Fig. 11 shows the falling objects in the VE, and they can be viewed from 

different viewpoint. In this figure, each object appearances and behaviours are simulated by a simulator. 

 
Fig. 10: 1P1O implementation 

 

 

 
Fig. 11: Falling Objects 

 

The objective of this experiment is to evaluate the 1P1O model in the CS network. Two parameters used in the 

evaluation process are as follows: 

 Scalability of the model 
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It is measured by using the frame rates of simulation with respect to varying number of objects and users 

involved in the DVE. 

 Performance of the model 

It is measured by the CPU usage and memory allocation for simulator. 

 

The simulators are run on a computer with dual core 1.6 GHz processor. It acts as computer server. The viewers 

are executed on a computer with the same specification as the computer server. Further, the universe is run on 

computer with Intel Atom 1.66 GHz processor. Both the 1P1O (proposed architecture) and Sirikata model (the 

current architecture) are executed on this platform. This experiment uses varying number of objects and 

concurrent users.  

 

Some variables measured in this experiment are as follows:  

 The frame rates of universe and space with respect to the number of objects and users 

 CPU usage of simulator for both models 

 CPU usage of universe and space 

 Memory allocation for simulator of both models 

 Memory allocation for universe and space 

 

The first variable is used to determine the scalability of the model. We use this variable to know the effect of 

increasing number of objects and users with respect to the frame rate of simulation. The other variables are used 

to determine the performance of our model compared to the current model. 

 

4.2 Experiment Results 

 

The experiment results presented and discussed in this section are based on the output of the experiment. The 

subsections below are described based on the variables measured in the experiment. 

 

Table 2: Universe frame rates based on objects 

Number of 

objects 

Universe Frame Rates (fps) 

1 2 3 4 5 6 Average 

10 59.038 59.753 58.923 59.364 59.108 59.232 59.236 

20 59.155 59.318 59.363 58.913 59.050 59.353 59.192 

30 59.142 59.123 59.554 58.722 59.046 59.558 59.191 

40 59.165 58.315 58.959 58.921 58.746 58.932 58.840 

50 59.123 59.164 58.913 59.644 59.159 58.120 59.021 

60 59.134 58.240 58.946 58.937 58.641 58.639 58.756 

70 58.321 59.037 58.747 58.736 58.618 59.360 58.803 

80 58.523 58.631 59.182 58.704 58.765 58.510 58.719 

90 58.316 58.467 58.339 59.111 58.954 57.942 58.522 

100 58.775 57.924 58.560 58.746 58.571 58.380 58.493 

 

4.2.1 Frame Rates of Model Based on Objects 

 

The frame rates of the universe for varying number of objects are shown in Table 2. These frame rates are 

measured from the condition where universe has already received all updates and disseminated the updates to 

interested objects to thirty seconds after that condition. Hence, there are six measurements because the frame 

rate is displayed in every five seconds. The frame rates are stated in frame per second (fps), and the average 

frame rates is provided at the right side of table. 

 

Generally, the frame rates of universe depend on the number of objects residing in the VE. It decreases with the 

increasing number of objects. The increasing of average frame rates in row 5 and 7 indicates that there are a few 

objects collisions occurred for 50 and 70 objects, respectively.  

 

Table 3 illustrates the frame rates of space in Sirikata model. These frame rates are measured by using the same 

condition as 1P1O model. Thus, they also consist of six measurements for varying number of objects. This 

figure also shows that the frame rates of simulation decrease as the number of objects increases. The comparison 

between average frame rates of Sirikata and 1P1O model is illustrated by Fig. 12. The difference between both 
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models is striking where the frame rates of Sirikata are lower than 1P1O model. Another important fact is that 

the 1P1O frame rates do not persistently decrease as Sirikata. 

 

Table 3: Space frame rates based on objects 

Number of 

objects 

Space Frame Rates (fps) 

1 2 3 4 5 6 Average 

10 59.378 58.613 58.472 58.528 59.363 59.187 58.924 

20 59.152 59.330 58.965 58.749 58.207 59.047 58.908 

30 59.251 57.769 58.340 58.384 58.186 58.518 58.408 

40 56.988 58.077 57.598 58.952 57.993 57.787 57.899 

50 56.551 57.767 56.330 57.154 56.823 57.549 57.029 

60 57.092 56.890 56.956 56.881 57.192 56.166 56.863 

70 56.767 57.362 57.327 56.712 56.322 56.767 56.876 

80 57.533 56.122 55.833 55.512 56.598 56.165 56.294 

90 56.516 56.255 56.578 55.580 55.783 56.966 56.280 

100 55.321 55.913 55.780 55.986 56.184 55.477 55.777 

 

4.2.2 Frame Rates of Model Based on Users 

 

Users view the VE using the viewer application. As described before, viewer is an object that is able to display 

the VE. Table 4 illustrates the frame rate of 1P1O model for varying number of users. These values are also 

measured from all tasks already done by universe component to thirty seconds after that. Similar to Table 2, the 

frame rates of the 1P1O model decrease as number of viewers (users) increases. Increasing values of row 4 and 

row 8 are caused by many collisions occurred among user‟s representation compared with the collisions for row 

3 and row 7, respectively. 

 

 
Fig. 12: Average frame rates of models based on objects 

 

Furthermore, the frame rates of Sirikata are drawn by Table 5. They are measured from frame rates of space, 

which determines other components in Sirikata architecture. In fact, similar to 1P1O, the Sirikata frame rate also 

decreases as number of users in VE increases. It means that increasing number of users increases the workload 

of simulation. Comparison of average frame rates between 1P1O and Sirikata model can be seen in Fig. 13. 

From the figure, we found that the frame rate of 1P1O is higher than Sirikata. The increasing number of users 

involved in VE does not strictly decrease the frame rate of 1P1O. Hence, the 1P1O model is more scalable with 

the increasing number of users in VE. 

 

Table 4: Universe frame rates based on users 

Number of 

viewers 

Universe Frame Rates (fps) 

1 2 3 4 5 6 Average 

10 59.356 59.562 59.594 59.775 59.560 59.127 59.496 

20 59.395 59.761 59.358 59.390 59.676 58.958 59.423 

30 58.936 58.915 59.362 59.517 59.548 59.121 59.233 

40 59.320 59.146 59.323 59.439 59.445 59.547 59.370 

50 59.167 58.989 59.380 59.310 59.250 59.149 59.208 

60 59.367 59.344 59.333 58.703 59.045 59.166 59.160 
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70 59.373 59.434 59.569 58.513 59.359 58.322 59.095 

80 59.352 58.760 59.569 58.717 59.558 58.924 59.147 

90 57.960 59.315 59.110 59.338 59.374 58.755 58.975 

100 59.748 59.354 59.327 59.120 58.734 57.354 58.940 

 

Table 5: Space frame rates based on users 

Number of 

viewers 

Space Frame Rates (fps) 

1 2 3 4 5 6 Average 

10 59.189 59.240 59.248 59.230 59.566 58.519 59.165 

20 58.709 59.095 58.994 59.664 58.395 59.041 58.983 

30 58.161 58.766 57.554 57.530 58.715 58.074 58.133 

40 57.902 57.912 57.113 58.169 57.551 57.647 57.716 

50 58.183 57.829 57.530 58.534 58.351 58.185 58.102 

60 57.993 57.704 57.167 58.126 57.107 56.561 57.443 

70 56.198 57.690 56.768 57.185 58.111 57.570 57.254 

80 56.117 56.918 57.199 57.200 57.827 58.461 57.287 

90 55.981 56.364 56.338 57.521 57.793 57.323 56.887 

100 56.971 56.372 55.913 56.182 56.567 57.033 56.506 

 

 
Fig. 13: Average frame rates of models based on users 

 

4.2.3 CPU Usage of Simulator 

 

The CPU usage of both 1P1O object simulator and Sirikata object host for varying number of objects are 

illustrated by Fig. 14. These values are taken from simulator running in the environment. From the figure, the 

Sirikata uses CPU time longer than 1P1O model. One of the reasons is that Sirikata object host simulates many 

objects in simulator so that its workload depends on the number of those objects. 

 

 
Fig. 14: Simulator„s CPU usage 
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Fig. 15: Simulation CPU usage 

 

4.2.4 CPU Usage of Model 

 

The CPU usage of universe and space for both models for varying number of objects are depicted by Fig. 15. 

The Sirikata model has CPU time greater than 1P1O model, and the disparity between both models is very high. 

For example, the CPU time of Sirikata for 50 objects is almost similar to CPU time of 1P1O model for 100 

objects. This behaviour is the same as CPU usage of simulator. This means that CPU usage of simulator 

influences the CPU usage of model. 

 

4.2.5 Memory Allocation for Simulator 

 

Memory allocation is determined by using the virtual memory used by a simulator. The memory allocations for 

simulator of both 1P1O and Sirikata model are shown by Fig. 16. We note that Sirikata simulator uses memory 

larger than 1P1O object simulator. The linear trend-line of Sirikata is not followed by the 1P1O in the figure. 

The 1P1O simulator has constant memory allocation for a certain interval of number of objects.  

 

 
Fig. 16: Memory allocation for simulator 

 

4.2.6 Memory Allocation for Model 

 

Similar to CPU usage of model, the memory allocation for 1P1O and Sirikata model is measured from universe 

and space component, respectively. The experiment result is illustrated by Fig. 17. From the figure, we note that 

although the memory allocation for Sirikata fluctuates, its values are higher than the 1P1O model. 
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Fig. 17: Memory allocation for model 

 

4.3 Discussion 

 

The experiment results show that frame rates of 1P1O model are higher than Sirikata for both varying number of 

objects and users. As illustrated by Fig. 12 and Fig. 13, the frame rates of the current model persistently 

decrease as the number of objects and users increase.  The workload of simulator also increases significantly 

when the number of object and users increase in the DVE. It causes the frame rates of the current model 

decrease. Fortunately, it does not happen to the 1P1O model since a distinct simulator manages each object. The 

increasing number of objects or users does not decrease the frame rates of model significantly. Thus, 1P1O 

model is able to accommodate the increasing number of objects and users in the VE. It means that the scalability 

of 1P1O model is better than the current DVE model. It is able to provide better user experiences than the 

current model. 

 

Furthermore, the CPU usage of the 1P1O model is less than the current model in both the simulator and 

universe. In Fig. 14, the CPU usage of the current model‟s simulator is linear with respect to the number of 

object. The increasing number of objects increases the CPU usage of simulator linearly. Contrary to Sirikata, our 

model simulator has CPU usage trend-line of logarithmic. It is better than linear CPU usage. Fig. 15 also shows 

that 1P1O model has CPU usage less than the current model. Our model has linear trend-line, but unfortunately, 

the CPU usage of the current model increases quadratic with respect to the increasing number of objects.    

 

The good result of our model is also followed by the memory allocation for simulator and model. The memory 

allocation of 1P1O is always less than the current model. It is depicted by Fig. 16 and Fig. 17. There are 

constant values of memory allocation in a certain interval in our model since the simulator only simulates the 

same number of objects. Unfortunately, the current model has different memory allocation values with respect 

to increasing number of objects and these values are always higher than 1P1O model. With two measurements 

above (CPU usage and memory allocation), the 1P1O model has better performance than the current model. 

 

5.0 CONCLUSIONS 

 

Currently, the scalability problems still challenge the researches in the DVE. To address the problems, this paper 

investigates the present methods used by researches to scale the DVE. All of these methods are classified into 

two approaches i.e. splitting the region and separating the component of simulator. The experiment results show 

that the second approach has better performance than the first one in both CPU usage and memory allocation for 

simulator. 

 

We have determined the characteristics of both approaches with three parameters i.e. the number of simulator 

per region, implementation, and the number of objects managed by simulator to find out the main problem. 

Based on these characteristics, we found some limitations of these approaches which are caused by the 

viewpoint used by developers to create and modify the DVE architecture. All approaches view the DVE as a 

world where all activities and appearances are managed by a simulator. It is called present viewpoint, and it is 

another finding of our work. 

 

The present viewpoint influences the scalability of the DVE. Increasing the number of objects and users reduces 

the DVE performance. Hence, the viewpoint change is required. This paper proposed a novel viewpoint called 

object-based viewpoint. It views the DVE as a world that consists of several objects. Each object is independent 

from each other. All behaviours and activities of the object are simulated by its own process or simulator.  
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The object-based viewpoint is implemented in developing a large scale DVE, called object-based simulator 

architecture or 1P1O model. The experiment results show that our model is more scalable with better 

performance than the current model. This model can be used by DVE developers and other researches to 

accommodate huge number of objects and users in the DVE.  

 

6.0 FUTURE WORK 

 

We have proposed a novel model that is able to accommodate a large scale DVE. In the experiments, we have 

implemented the model in client server network. Our future work is to implement this novel architecture in peer-

to-peer (P2P) network. Based on the advantages of the P2P network, it is possible to get more scalable DVE. 

 

ACKNOWLEDGEMENT 

The work of Tutut Herawan is supported by PRPUM Research Grant No CG063-2013. The work of Elfizar is 

supported partly by University of Riau. The helpful comments and suggestions of the reviewers are 

acknowledged.  

 

REFERENCES 

 

[1] Second Life, 2014, http://www.secondlife.com. 

  

[2] T. Shepherd, “Second Life Grid Survey – Region Database”, 2012, http://www.gridsurvey.com. 

 

[3] C.R. Ondrejka, “Escaping the Gilded Cage: User Created Content and Building the Metaverse”, New York 

Law School law review, Vol. 49, No. 1, 2004, pp. 81-101. 

 

[4] W. Cai, P. Xavier, S.J. Turner, B. Lee, “A Scalable Architecture for Supporting Interactive Games on the 

Internet”, In Proceedings of the Sixteenth Workshop on Parallel and Distributed Simulation, 2002, pp. 60-67. 

 

[5] U. Farooq, J. Glauert, “Scalable and Consistent Virtual Worlds: An Extension to the Architecture of 

OpenSimulator”, In Proceedings of Int. Conf. on Computer Networks and Information Technology, 2011, pp. 

29-34. 

 

[6] E. Carlini, L. Ricci, M. Coppola, “Flexible Load Distribution for Hybrid Distributed Virtual Environments”, 

Future Generation Computer Systems, Vol. 29, No. 6, 2013, pp. 1561-1572. 

 

[7] H. Liu, M. Bowman, “Scale Virtual Worlds through Dynamic Load Balancing”, In Proceedings of 

IEEE/ACM Symposium on Distributed Simulation and Real Time Applications, 2010, pp. 43-52. 

 

[8] J. Waldo, “Scaling in Games and Virtual Worlds”, Communications of ACM, Vol. 51, No. 8, 2008, pp. 38-

44. 

 

[9] S. Byelozyorov, R. Jochem, V. Pegoraro, P. Slusallek, “From Real Cities to Virtual Worlds using an Open 

Modular Architecture”, The Visual Computer, Vol. 28, No. 1, 2012, pp. 1-13. 

 

[10] D. Lake, M. Bowman, H. Liu, “Distributed Scene Graph to Enable Thousands of Interacting Users in a 

Virtual Environment”, In Proceedings of Annual Workshop on Network and System Support for Games, 2010, 

pp. 140-148. 

 

[11] D. Horn, E. Cheslack-Postava, B.F.T. Mistree, T. Azim, J. Terrace, M.J. Freedman, P. Levis, “To Infinity 

and Not Beyond: Scaling Communication in Virtual Worlds with Meru”, Stanford Computer Science Technical 

Report, CSTR 2010-01. 

 

[12] Open Simulator, 2014, http://www.opensimulator.org. 

 

[13] S. Yamamoto, Y. Murata, K. Yasumoto, M. Ito, “A Distributed Event Delivery Method with Load 

Balancing for MMORPG”, In Proceedings of 4
th

 ACM SIGCOMM Workshop on Network and System Support 

for Games, 2005, pp. 1-8. 

 

http://www.gridsurvey.com/
http://www.opensimulator.org/


Object-Based Viewpoint For Large-Scale Distributed Virtual Environment.  pp 301-317 

 

 

 

316 
Malaysian Journal of Computer Science.  Vol. 28(4), 2015 

  
 

 

[14] K. Lee, D. Lee, “A Scalable Dynamic Load Distribution Scheme for Multi-Server Distributed Virtual 

Environment Systems with Highly-Skewed User Distribution”, In Proceedings of ACM Symposium on Virtual 

Reality Software and Technology, 2003, pp. 160-168. 

 

[15] J. Jardin, D. Zappala, “A Hybrid Architecture for Massively Multiplayer Online Games”, In Proceedings of 

7
th

 ACM SIGCOMM Workshop on Network and System Support for Games, 2004, pp. 60-65. 

 

[16] B. De Vleeschauwer, B. Van Den Bossche, T. Verdickt, F. De Turck, B. Dhoedt, P. Demeester, “Dynamic 

Microcell Assignment for Massively Multiplayer Online Gaming”,  In Proceedings of the 4th ACM SIGCOMM 

Workshop on Network and System Support for Games, 2005, pp. 1-7. 

 

[17] D. Ahmed, S. Shirmohammadi, “A Microcell Oriented Load Balancing Model for Collaborative Virtual 

Environments”, In Proceedings of IEEE Conference on VECIMS, 2008, pp. 86-91. 

 

[18] T. Debeauvais, A. Valadares, C.V. Lopes, “RCAT: A Scalable Architecture for Massively Multiuser Online 

Environments”, 2013, http://www.ics.uci.edu/~tdebeauv/files/2013-RCAT.pdf. 

 

[19] World of Warcraft, 2014, http://www.worldofwarcraft.com. 

 

[20] M.T. Najaran, S.Y. Hu, N.C. Hutchinson, “SPEX: Scalable Spatial Publish/Subscribe for Distributed 

Virtual Worlds without Borders”, In Proceedings of 5th ACM Multimedia Systems Conference, 2014, pp. 127-

138. 

 

[21] L. Ricci, E. Carlini, “Distributed Virtual Environments: From Client Server to Cloud and P2P 

Architectures”, In Proceedings of Int. Conf. on High Performance Computing and Simulation (HPCS), 2012, 

pp. 7-8. 

 

[22] E. Carlini, M. Coppola, L. Ricci, “Integration of P2P and Clouds to Support Massively Multiuser Virtual 

Environments”, In Proceedings of the 9
th

 Annual Workshop on Network and System Support for Games, 2010, 

pp. 1-6. 

 

[23] M.T. Najaran, C. Krasic, “Scaling Online Games with Adaptive Interest Management in The Cloud”, In 

Proceedings of NetGames’10, 2010. 

 

[24] L. Chan, J. Yong, J. Bai, B. Leong, R. Tan, “Hydra: A Massively-Multiplayer Peer-To-Peer Architecture 

for the Game Developer”, In Proceedings of the 6
th

 ACM SIGCOMM Workshop on Network and System Support 

for Games, 2007, pp. 37-42. 

 

[25] R. Olanda, M. Perez, J.M. Orduna, “Hybrid P2P Schemes for Remote Terrain Interactive Visualization 

System”, Future Generation Computer Systems, Vol. 29, No. 6, 2013, pp. 1522-1532. 

 

[26] A. Chen, R.R. Muntz, “Peer Clustering: A Hybrid Approach to Distributed Virtual Environments”, In 

Proceedings of the 5
th

 ACM SIGCOMM Workshop on Network and System Support for Games, 2006, p. 11. 

 

[27] K.C. Kim, I. Yeom, J. Lee, “HYMS: A Hybrid MMOG Server Architecture”, IEICE Transactions on 

Information and Systems, Vol. E87, 2004, pp. 2706-2713. 

 

[28] E. Buyukkaya, M. Abdallah, R. Cavagna, “Vorogame: A Hybrid P2P Architecture for Massively 

Multiplayer Games“, In Proceedings of CCNC, 2009, pp. 1-5. 

 

[29] M. Almashor, I. Khalil, Z. Tari, A.Y. Zomaya, “Automatic and Autonomous Load Management in Peer-to-

Peer Virtual Environments”, IEEE Journal on Selected Areas in Communications, Vol. 31, No. 9, 2013, pp. 

310-324.  

 

[30] E. Carlini, M. Coppola, L. Ricci, “Evaluating Compass Routing Based AOI-cast by MOGs Mobility 

Models”, In Proceedings of SIMUTools’11, 2011, pp. 328-335. 

  

http://www.ics.uci.edu/~tdebeauv/files/2013-RCAT.pdf


Object-Based Viewpoint For Large-Scale Distributed Virtual Environment.  pp 301-317 

 

 

 

317 
Malaysian Journal of Computer Science.  Vol. 28(4), 2015 

  
 

 

[31] A. Denault, C. Ca~nas, J. Kienzle, B. Kemme, “Triangle-Based Obstacleaware Load Balancing for 

Massively Multiplayer Games”, In Proceedings of 10th Annual Workshop on Network and Systems Support for 

Games, 2011, pp. 4:1-4:6. 

 

[32] B. Van Den Bossche, B. De Vleeschauwer, T. Verdickt, F. De Turck, B. Dhoedt, P. Demeester, 

“Autonomic Microcell Assignment in Massively Distributed Online Virtual Environments”, Journal of Network 

and Computer Applications, Vol. 32, No. 6, 2009, pp. 1242-1256. 

 

[33] R. Ranjan, L. Zhao, “Peer-To-Peer Service Provisioning in Cloud Computing Environments”, The Journal 

of Supercomputing, Vol. 65, No. 1, 2013, pp. 154-184. 

 

[34] Sirikata, 2014, http://sirikata.com. 

http://sirikata.com/

