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ABSTRACT

A new multi-class pattern classifier called ‘Test Feature Classifier’ is presented. It isbased on training a recogniser
by training samples of binary patterns and voting primitive scores depending on many trained templates called ‘test
feature’, which serves as local evaluation of the features. The method is non-metric and does not misclassify any
patterns once learned previously. The two-class version of test feature classifier was of high performance for
searching textual region in complex images. In this paper, we extend it to handle multi-class problems and apply it
for solving ill-class problems in texture classification. We show the performance of the classifier on more than 1000
real images and compare it with a linear distance-based classifier and a nonlinear distance-based classifier. The
experimental results of both simulations and real applications show that the proposed classifier has better
performance than conventional ones.

Keywords Pattern recognition, Test featureclassfier, l1l-class problem, Texture dassification, Rank feature

10 INTRODUCTION

The essence of classifier design can be said as the generation of discriminant functions in afeature space by utilising
apriori knowledge of class distributions or given training samples [1, 2]. Many classifiers such as distance-based
classifiers or Bayesian classifiers assume their classes as some probabilistic distributions. They do not have
excdlent capability to create discriminant functions more complicated than hyper-planes or at most quadratic
surfaces for multi-dimensional feature space, so misclassification often occurs when the classes do not separate each
other perfectly. Furthermore, in the case of no a priori knowledge on the classes or very small training samples, we
cannot have reasonable model of their distributions. Here let us call such aproblem as aniill-classproblem.

In order to solve such ill-class problems, many classifiers have been proposed. Piecewise linear classifiers [1]
pemit to use some training samples for defining each dass and then the discriminant surface consists of connected
hyper -planes. We have to carefully select the representative samples to expect the good performance. Decision tree
classifiers [3] can generate a complex discriminant by hierarchical threshold. However, the characteristics of
features should be well understood to obtain the optimal threshold values. Neural networks [4] also need plural
training paterns for feeding to back propagationlearning process to define the weights. Support vector classifiers
[5, 6] utilise an extended feature space from the original space to construct a linear classifier in the extended space
which may separate different classes, but extension of feature space derives another computation problem.

The ill-class problem also occurs when we hope a single distribution as a model of each class, which implicitly
includes more than one cluster. As an alternative approach to the problem, we can classify each subclass as an
indgoendent class; otherwise we have to design some efective features, which generate no subclasses. This is one
of the reasons why there have been many studies on feature extraction which are invariant to scaling, rotation,
contrast change [7, 8, 9], etc. In short, the solutions to decrease misclassificaion also have been tried by feature-
based gproaches. However, approaches dependng excessively on features are not suitable for an automatic system
and it isnot asmple task to design appropriate features.

We have proposed a novel pattern classifier called ‘Test Feature Classifiers (TFC) which can solve the ill-class
problems without redesign of some special features, because TFC has a capability to create the complicated
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discriminant functions [10, 11]. TFC consists of two main procedures: test feature extraction and voting selection.
The first procedure can be considered as a learning process where a test feature (or simply, a test) is a loca
combination of any features that can sufficiently distinguish the classes. The concept of test is an evduation of
several combinaions of features (local recognition) to decide the result of entire features (global recognition). It
was first introduced in [12] for the purpose of digital logic circuit analysis. The tests in TFC are generated directly
from some training samples that are represented by bit patterns. In the second procedure, an unknown object will
then be classified by voting primitive scores calculated from the tests. This method is non-metric and does not
misclassify any patterns once leamed previously. We have shown that TFC is of high performance for two-class
problems by using it for recognition of character and non-character regions [13, 14, 15]. In this paper, we extend it
to handle multi-class problems and apply it to both simulated and real images data. We also propose a new feature
for texture analysis called rank festure [11].

This paper isorganis ed as follows: Section 2.0 describes a mathematical formalis ation of the proposed classifier and
an artificial example is aso given. The simulations to inspect the performance of TFC are presented in Section 3.0.
In Section 4.0, after the description of rank feature, we describe the experiments of texture classification on more
than 1000 real images. The performance of TFC is compaed with the linear and non-linear distance-based
classifiers. The experimental results of both simulations and the real texture classification show that TFC has better
performance than the conventional ones. Section 5.0 concludes the paper with severa conduding remarks.

20  MULTICLASSTEST FEATURE CLASSFIER

The original idea of TFC is a discrete procedure of recognition, which is proposed in [16]. We then develop and
formulate it as a general learning method (classifier) for pattern recognition. The voting functions are m-degree
polynomials and can be used for partitioning the n-dimensional feature space (m < n), whose features are assumed to
be binary valued. Statistical, structural or metrical characteristics of patterns are not required. We theoretically
farmulate TFC and then give an example of gpplication to smple artificia data

21 Formalisation

Suppose that F :{f_:(fl, fy,-+, f,) is an ndimensional feature space, and each pattern is represented as a
binary -valued feature vector in this space f; | {0,1}. Let us also suppose that there is a collection of disjoint h-
dasses C={C,;,C,,---,G,}(h?® 2) tobedassfied. Eachclasshasaset of training samples as follows:

Ci i %0, X, 51 Ko} @
where

iX; =X Xd X)), j=1200,m @
ad

X T{01, k=12,-,n ®

A collection of features t ={ky,K;,--",Ks} (1£ g £n) iscalled a test feature(or simply, atest) if it satisfies the
following conditions: for any different pair of classes uand v (* u), and for any p,(1£ p,£m,)and p,
(1£ p, £ m,), there always exigts some feeture bits such that

Pui1 Pv
u kg Vst @

The conditions certify that if we have a test we can always discriminate each class only by checking difference
among thetests. A testt ={kj;,k;,--, Ky}, isrepresented by an ntuplevector € ={t,,t,, -t} , where
11 if kTt

t =
%O otherwise

©

Then let us define the maximal set of tests derived from C as T(C) ={f;,f,,-- §;}(1£I £2" - 1) . We know there
are al 2" -1 combinations of possible features. From the etracted set of tests T(C), we select prime-test features
which are the tests whereby t - {kg} do not satisfy the test condition for any s. In other words, an irreducible set of
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features which forms atest is called a prime-test, so that the set of tests T(C) and the set of prime-tests P(C) have a
rd ation asfollow:

PO (O ©
We cdll the above procedre as a test feature extractionthat correspondsto alearning process.

In order to classify an unknown pattern i, a voting selection is performed by calculating a score for each class as
the fdlowing voting function:

_ l o I’D Ju j
Vih=—aao@ tk|tk‘ iXk) ™
t1 P j=1k=1

Finally, the number i that corresponds to max(\/i (t )) shows the recognised class.
Sincefor all training samples ; X, T C;
V(y)‘ﬁl if i=]
147K }=O otherwise
we can find an important property that TFC classifies al training samplescorrectly.

®

22 Numerical Example

It is easy to understand TFC by a simple numerical example. As shown in Table 1, consider that there are three
classes on a four-dimensional feature space to be classified, where each class has two training samples represented
in four bits (four-dimensional vectors). From this table, we can find that the first training sample of the second

class , %, is0100, where , Xt is0, , x5 is1, and soon.

Table 1: Training samples

Class Samples
0010
C1 0011
0100
C 1001
1101
Cs 1110

Since we have the four bits, there are 15 possible candidates of test. Tests and prime-tests can be detected as shown
in Table 2. In order to avoid misunderstanding between vectors of training samples and vectors of tests, let us
denote o and - for vectors of testswhere o isareferred bit and - isan unreferred bit. For example, - oo cannot
be a test, because the training sample X, (0011) partly equals to the training sample ,X, (1001) due to the

template - o- o. On the other hand, since a combination of the second, third and fourthbits of all training samples
does not have the same patterns, - coo holds as a test and also as a prime-test. For another example, co- o isnot a
prime-test although it is a test, because it is still satisfying as a test when the fourth component is taken away, i.e.
then it will be oo- - which is still atest. For training samples of Table 1, two prime+tests - ooo and oo- - are
obtained.

Next, consider that there is an unknown olject represented as 1100. Table 3 shows the voting results of TFC for the
object according to the extracted prime-tests. A prime-test can be considered as a template, which is put on all of
training samples and the object. For example, by the template - ocoo, the first training sample of the second class
(0100) will be -100, and the object will also be-100 (-’ isdon’t care bit). Thus, 1100 partly corresponds to 0100
due to the template; so one score is voted to the class of 0100. This calculation is executed for all training samples
and all primetests. Finally, the total amount of scores are then normalised by the number of training samples of
each class, and the class which gets the maximum score is to be the solution. Table 3 shows that TFC classifies the
unknown 1100 as amember of Ca
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Table2: Test and prime-test extraction

Test Candidate Notes

<0 Not test

s.0- Not test

. .00 Not test

P Not test

.o0-0 Not test

-00- Not test

~o000 Test and prime-test
P Not test

o:+0 Not test

o+o0- Not test

o0:00 Not test

00 - Test and prime test
00+ 0 Test but not prime-test
000 - Test but not prime-test
0000 Test but not prime-test

Table 3: Voting result for unknown pattern * 1100

Prime-Tests Tota

Class Samples -000 | oo-- Soores

0010 0 0 o =00

C, 0011 0 0 /2 '
0100 1 0 _

=05
(O 1001 0 0 }/2
1101 0 1 _

=10
Cs 1110 0 1 %

30 SMULATION

For simulation, we have synthesised the artificial data on a region of 16 ~ 16 square. From the 256 possible patterns
of the eight-dimensional feature space (n = 8), we have chosen 10 patterns per class randomly for training samples,
and all patterns have been recognised. The results of recognition are plotted in the figures. The performance of
TFC is compared with both linear and nonlinear minimum distance-based classifiers. We have adopted the
Euclidean distance for Linear Classifier (LC) and the Mahalanobis distance for Non Linear Classifier (NLC). For
both LC and NLC, we used the coordinates of patterns as features. For TFC, we used a binary representation of the
coordinates of patterns. So each training sampleis repiesented in eight bits.

As shown in Fig. 1 and Fig. 2, since the discriminant boundaries created by either LC or NLC are not more
compl icated than a straight line or a quadratic line, misclassification of training samples has occurred. In Fig. 2, the
three classes in the peripheral part consist of several clusters while the central class has only one cluster. The
recognition results show that the distance-based classifiers recognise one class as one cluster. However, TFC allows
one class to include several different clusters. |If we consider that a cluster represents a subclass, it means that TFC
can unify some different subclasses as a single class. This suggests that TFC may be useful for ill-class problems
especidly in the case of existence of subclasses.

40 TEXTURE CLASSFICATION
Texture classification is one of the important research subjects in many fields. Recently, most of the studies on
texture cleassification have been performed by the approaches of feature design [7, 8, 9, 17]. In this paper, we

present the use of TFC for handling ill-class problems in the texture classification, especially the ill-class problem
when one classis constructed from severd independent subclasses.
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Fig. 2: Smulaion for four-classproblems

The subclass classification problems appear very often in many cases. For example in image analysis of remote
sensing data [18], there are many kinds of water area such as sea, river, lake, pond etc. Since their characteristics
are different from each other, each of them might be classified as a different water area. However, in many cases,
there maybe the requirement whereby they have to be recognised as the same area. In this case, many typical
classifiers need to adopt the feature, which can unify them into a possible single representation. In other words, all
of the water areas should be a single cluster when they are mapped on a feature space. A classin TFC should not be
assumed as a single duster, because TFC can recognis e many disjoint clusters as a single class as we certified in the
smulations.

Therefore, in this research, we adopt the co-occurrence matrix [19] which is one of the most popular features for

texture analysis. Since they are real-valued features, we should encode them into binary codes, where some
quantised paameters are necessary. In order to clarify this problem, the co-occurrence matrix are then transformed
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into what we call as rank feature which is a kind of the ordinal measure [20]. The robustness of this kind of
measure has been confirmed for image correspondence [21].

41 Rank Feature

Suppose there is an image on a window where its intensity is expressed in N levels. The co occurrence matrix
O(s)isan N” N matrix:

83311 O, *+ O 0
0 cos =

o=g7 % T ©
gONl Onz ** Onng

The 0;; represents the frequency of appearing of the intensity i and j simultaneously, where the pixel of j is located

at a constant displacement s (angle and distance) from the pixel of i. From these matrix elements, some new
features can be drawn such as energy, entropy, correlation, moment, etc [19]. We do not discuss them in detail since
they areout of our focus.

Sincethemarix O issymmetric (0;j = 0j; ), the matrix elementsthat should be calculated are only:

8@'11 012 ++ O 9
- o' ... 0 =
O':g : :22 . :2N - (10)
é - - - Owg
where
1o i =
0 =12 _ (11)

The features of TFC are represented in binary-valued. However, if we adopt the coded version of o; or o asthe
feature furthermore, the binary representation has a long bit pattern unnecessarily. To avoid this drawback, we

convert O' tothefollowing N™ N rankmatrix R:

85‘11 Nz -+ hyn 9
- r cos r N
R =g S 12

é' - D
where rj; is the rank of element 0 among the matrix O'. The rank feature r;; is always an integer with the range
of 1Er;EN(N+D/2, so all of them can be represented efficiently in the same length of bits, i.e.
log,(N(N +1)/2). From all the rank matrix elements, we arbitrary choose some fixed components, and use each
bit of the encoded ones as afeature for TFC.

In atypical classification system, feature extraction is usually of key significance to the overall system performance.
However, the performance of the system is dependent not only on the quality of the features, but also on the
classifiability of the classifier. Thus, we usethis simple rank feature to show that even with such a primitive feature
TFC can achieve rather high and stable performance.

42  Experiments

The purpose of this experiment is to show that TFC has a capability to classify some independent subclasses as a
single class. In real texture classification, the subclasses may appear when a class is generated from the similar
texture images taken in different conditions of contrast, rotation or scaling. They will not be subclasses if we use
some features, which ae invariant with respect to them. The co-occurrence matrix and also rank features are
contrast-variant features.
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We deal with two cases of ill-class problems that come from the difference of brightness and the variety of different
textures, respectively. In addition, asin the simulations, here we also compare the performance of TFC with LC and
NLC.

421 FeatureExtraction

In the experiments with real images, we have reduced the length of feature as follows. The intensity of the original
images having 256 levels of gray-scale has been reduced into 8 levels by quantising with the equal interval of 32.
Thisreduction only “roughens” the intensity but the characteristics of the textures are still preserved. Fig. 3 shows
an example of the intensity reduction of a texture image. Thus, only 8 8 co-occurrence matrix can be cdculated
(in the experiments, we only adopt the co-occurrence matrix of constant displacement with O degree angle and 1
pixel distance). Each rank feature might be represented in five bits of binary code. From all of these features, we
chose a combination of four features for each classification, getting a feature space of 20 dimensions. We use their
binary representation for TFC while the unencoded values for LC and NLC. The original images are segmented into
small sub-images of 64" 64 pixelswith no overlap as shown in Fig. 4. Each of these sub-images is considered as a
texture pattern and used as one object for classification. We caallate the co-occurrence matrix from these sub-

imeges.

(@) Origindl (256 levels) ~ (b) Reduction (8 levels)
Fig. 3: Intensity-reduction of texture image

Fig. 4: Segmentation of origind imege

422 |ll-classProblem 1

We use three images of the well-known Brodatz texture downloaded via a Web site [22]. From each image, two
images with different brightness are created manually by performing multiplication of the original images with two
different constants. Since the size of the original imagesis 512° 512 pixels, we have obtained 384 sub-images for
eperiment. From each kind of images, 10 sub-images are selected randomly for training samples, and the
remaining ones are used for recognition.

We have made two kinds of classification setsof training samples as shown in Fig. 5(a) and Fig. 6(a). Each class of
the first classification set includes only the same texture images. The second classification set has the same textures
except for brightness, so that an ill-class may appear since the rank feature is brightness variant. The maximum
number of the extracted prime-tests for classification set 1 is 325 (24 training samples), the minimum number is 20
(3 training samples) and the average number is 181.9. For the classification set 2, the maximum is 542 (18 training
sarples), the minimum number is 83 (6 training samples) and the average number is 405.5.
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Fig. 5: Recognition of classification set 1 for TFC, LC and NLC
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(b) Recognition results
Fig. 6: Recognition of classification set 2 for TFC, LCand NLC

For classification set of Fig. 5(a), it can be considered that there might be no ill-class problem, therefore all the
classifiers could achieve the high recognition rates as we can see in Fig. 5(b). NLC cannot recognis e if the number
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of training samples is less than the number of features. On the other hand, TFC is effective although the number of
training samples is not enough. As shown in Fig. 6(b), it is clear that LC can not handle thisill-class problem while
NLC isnot so bad, but their recognition rates are less than the one of TFC.

4.2.3 lll-classProblem 2

In this second experiment, we have three classes of natural textures: brick, stone and cloth. The texture images are
taken by a conventional digital camera. Each class includes subclasses corresponding to three kind of different
textures as shown in Fig. 7(a). As in the experiment of previous section, we also segment the original images
(640" 480 pixels) into small texture images of 64” 64 pixels, so that about 630 tedture images are obtained from
nine original images. From each kind of texture, we have selected 10 images for training samples (90 training
samples in all) and the remaining ones are used for recognition. In order to show the effect of subclass in
recognition result, we have divided the 90 training samples of Fig. 7(a) into three parts. The first part (from the first
to the thirti eth) was the training samples from images of the first line of classification set 3. The second part (from
the thirty first to the sixtieth) was from the second line and the third part (fromthe sixty first to the ninetieth) was
from the third line. The maximum number of the extracted primetests for classification set 3 is 1542 (36 training
samples), the minimum number is 53 (6 training samples) and the average number is 717.7.

Brick Cloth Stone

e

Racog. rate
L
104

A
a0 ‘A‘
P

60 s ; A TFC

2RLAETT 6000000 o e
40 NLE
20
1]

o a0 60 a0

Wumbar of training =ample
(b) Recognition results
Fig. 7: Recognition of classfication set 3 for TFC, LCand NLC
Fig. 7(b) shows the recognition results of classification set 3. For LC, the recognition rate worsens as the number of
training samples increases. Although the recognition rate of NLC increases while the second part of training

samplesis learned, there is almost no change for the third part. In contrast with these results, the recognition rate of
TFC increases monotonously as the number of training samples increases. It means that TFC has a capability to
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recognise some different subclasses as asingle class. The recognition rate of TFC with 90 training samples is about
90%, however it may stil increase if more training samples are given.

The recognition rates of TFC, LC and NLC for all the once-learned training samples of the classification set 1, 2 and
3areshowninFig 8. Itisclear that no misclassfication of training samples occurs, only in the case of TFC.

Recog rabe
(%

100
B0
LC
50 W LC
mTEC
40
20
n]

Sat 1 Ser 2 St 3

Fg. 8: Recognition of training samples

50 CONCLUSON

We have presented a novel multi-class pattern classifier called TFC. This classifier is based on constructing prime-
test features, which are local combination of the features that suff iciently discriminate the classes of given training
samples, and voting primitive scores depending on the prime-tests. Features utilised in TFC have binary-coded
representations, by which the extraction of prime-tests and the computation of scores for voting can be performed
essily and fast through bit operations. Another important characteristic is that it has no misclassification on any
patternslearned previoudy.

The ability of TFC to create the complex boundary of discrimination was confirmed by the simulation. This
suggests that it can effectively solve the ill-class problem that occurs when a class is constructed by some different
subclasses. TFC has been applied to solve the ill-class problems in the real texture classification. We have

inspected the performance of TFC on more than 1000 real texture images of the two cases of ill-class problems.
From the conparative experiments with the linear and non-inear distance-based classifiers, TFC shows excellent

performance in both simulation and real applications. We have aso proposed a new kind of feature for texture
classfication called rank feature that has good performance even for red texture images.

Since the voting selection is performed for all training sarmples and all prime-tests, a suitable number of prime-tests
is very expected. Setting the importance of each prime-test may reduce the number of primetests. We left this
problem as the next work.
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