Malaysian Journal of Computer Science, Vol. 14 No. 1, June 2001, pp. 1627

OPTIMAL DATAPATH DESIGN FOR A CRYPTOGRAPHIC PROCESSOR: THE BLOWFISH

ALGORITHM
Noohul Basheer Zain Ali JamesM Noras
Department of Electrical and Electronic Engineering Department of Electrical and Electronic Engineering
UTP, Bandar Seri Iskendar Bradford University
31750 Tronoh, Perak Bradford BD7 1DP, UK
M daysia email: jmnoras@bradford.ac.uk

ABSTRACT

BLOWFIH is a fag cryptographic software algorithm, using the operations of addition, XOR and look-up tables.
This paper reports on the design of a hardware inplementation for greater speed, with pipelining and different bit-
widths of regigers and processng units. An 8hit paralld datapath gives the best performance, mapping into 4
independent 8-bit modules, with a throughput at least 4 times greater than with 32-bit hardware. The design is
suitable for implementation using small amounts of RAM and programmable logic.

Keywords Digital design, Cryptography, Data encryption, Pipdining, Programmable logic, Feige network,
Adders

1.0 INTRODUCTION

As we move into the twenty-firs century, we see information processing and the telecommunication revolution
continuing to grow very rapidly. The techniques of cryptography are essential for keeping information secret, for
determining that information has not been tampered with and for controlling access to pieces of information [1].
Encryption is the transformation of data into a form unreadable by anyone without a secret decryption key [2], in
order to ensure privacy. The information is hidden from anyone for whom it is not intended, even from those who
can see the encrypted data For example, one may encrypt files on a hard disk to prevent an intruder from reading
them. Encryption dso dlows secure communication over an insecure channd. In a secure cryptosystem, the
plaintext cannot be recovered from the ciphertext except by using the decryption key [2]. In a symmetric
cryptosystem, asingle key servesfor encryption and decryption. The processisshownin Fig. 1.

11 TheBlowfish Algorithm
Blowfish is a 64-bit block cipher presented by Bruce Schneier [3]: a software programmed in C, and is a suggested

replacement for DES (Data Encryption Standard). DES wes the standard cryptogrgphic agorithm for more than 19
years, but it is now accepted that its key sizeistoo small for present usage [4].

Faceypion Kex | [Decevption ey |

+ +
[Praintext fJENCRYFTION || [PECRYPTION Hlmt-u-]
Ciphertent |

Fig. 1. Encryption and decryption

Blowfish is a fagt dgorithm and can encrypt data on 32-bit microprocessors a a rate of one byte every 26 clock
cycles [5]. The agorithm is compact and can run in less than 5K of memory. It has a variablelength key block
cipher of up to 448 hits. Although a complex initidisation phase is required, the encryption of data is very efficient
on microprocessors. It suits gpplications where the key does not change often, for example, a communication link
or automatic file encryptor.

16

Optimal Datapath Design for a Cryptographic Processor: The Blowfish Algorithm

13 ThePotential of Hardware I mplementation

There is a trend to produce software of designs of data encryption agorithms for the purpese of desgner’s
understanding and debugging, but eventudly to put them into hardware for maximum speed and increased security.
Even though software implementation can be optimised using assembler code, the result is ill dow compared with
hardware implementations. For example, a software implementation of IDEA (Internationd Data Encryption
Algorithm) on a Sun SPARC2 workstation encrypts data at 400 Kbps, while a VLS implementation of the same
algorithm encrypts dataat 177 Mbps, some 450 times faster [6].

14 Outlineof Paper

The next section of this paper describes in detal the Blowfish dgorithm. In its origind form, it requires 32-hit
processing. Section 3 describes how the agorithm is decomposed and reconstructed with smaler word sizes to find
the best performance in terns of speed, and the implementation of the appropriate design using a pipeline method.
Section 4 describes how the dgorithm is mapped into 4 modules using scheduling and alocation techniques, tested
and verified by dmulation. The find section reviews the projected performance of the design and discusses
potential applications and future work.

20 ANALYSSOF THE BLOWFISH ALGORITHM

Blowfish is a symmetric block cipher that encrypts data in 8-byte (64-bit) blocks [3]. The agorithm has two parts,
key expanson and data encryption. Key expansion consists of generating the initiadl contents of one array (the P-
aray), namdy, eighteen 32bit sub-keys, and four arrays (the Sboxes), each of size 256 by 32 hits, from a key of at
most 448 hits (56 bytes). The data encryption uses a 16-round Feistel Network [7, 8]. This type of network dates
fromthe early 70s[9, 10].

21 The Feistel Structure

Fig. 2 shows a block diagram of an dgorithm with the Feistel structure for ecryption, with 16 rounds of confusion
and diffusion [11]. Mathemetically the functions can be expressed as below:

Take a block of 64 hits and divide it into two equa hdves L and R. Then define the iterated block
cipher when the outputs L, and R of the i'th round are determined from the outputs Li.; and R, of the
previous round:

Li=Li1

R=Li1A F (R4, K),
where K; isthe sub-key used in thei'th round and F is specific to the particular dgorithm.

The main feature of this condruction is that it is reversble [12], in that the same network (with the same keys
accesad in the reverse order) is used both for encryption and decryption. A Feistel -type network is not only used in
Blowfish but it is dso the basis of DES [13], and is used in many other cryptographic agorithms such as LOKI,
GOST, FEAL, Lucifer, Khufu and Cast.

22 TheF Function of Blowfish

The F Function, regarded as the primary source of agorithm security [3], combines two smple functions. addition
modulo two (XOR) and addition modulo 2%2

17

Ali and Noras

Plaintext I

Ln..t hits

I bt

P— a2

l—————& I Function

31 hbits

p—b |
Lt ——@

A
> 13 More lterations I\\

P. é:‘]
P E s é
! }

32 s 1_ 32 bits

:_.___{&i'
Cliphertext
Fig. 2. Structure of Blowfish
Fg. 3 illustrates the F Function. Clearly, no complex mathematica process is involved, unlike exponentiaion
(modulo N) in RSA for example [14], but the mixture of the agebraicaly dissmilar types of operaion makes

inverson without knowledge of the key very difficult. The only additional operations are four indexed aray data
lookups per round.

4
-
S-Hox 3 b4
B[|

S-Bax 4

%

Fig. 3: Ffunction
The F function isthe kerndl and distinguishing feature of Blowfish [5], andis applied asfollows:
Divide XL (32 Bits) into four 8-bit quarters. a, b, ¢, and d. Then:
FXL)={(Sl{d + S2[b]) A S3[c]} + Sd])},

where + means addition modulo 2%, and
A meansexdusve OR, i.e XOR

Optimal Datapath Design for a Cryptographic Processor: The Blowfish Algorithm

Si[a], for example, means the content of Sbox 1 a address a The addresses a, b, ¢ and d are 8hits wide, while the
Shbox outputs are 32-bitswide. The process of data encryption can be described as in the pseudocode below:

Divide X into two 32-hit haves XL and XR
For i=1to 16:
XL=XL A R
XR=FXL)A XR
Swap XL and XR
Endfor
Swgp XL and XR (Undo the last swap.)
XR=XR A P17
XL=XL A P
Recombine XL and XR
Output X (64-bit data block: ciphertext)

For decryption, the same process is applied, except that the sub-keys B must be supplied in reverse order. The
nature of the Feistel network ensures that every haf is swapped for the next round (except, here, for the last two
ub-keysP;;and Py).

23 Speed and AreaFactors

In eech F function, there are two 32-hit additions. Since the F function loop is iterated 16 times for a block of data
encryption, the additions are repeated 32 times. Not only does this arithmetic make the whole agorithm potentialy
very dow, but adso 32-bit adders would require a large dlicon area Also, in the most obvious implementation,
computation has to wait for the current process to finish before it can proceed to the next stage. For example, the
first stage addition in the F function has to finish before the XOR function can be done. Smilaly, the second
addition cannot be executed until the previous XOR function is completed.

The iterations must remain at 16 rounds to ensure the security of the agorithm [5]. Thus, any speedtup requires a
deeper analysis of the algorithm.

30 HARDWAREANALYSS

Pipdining is a wel-known technique for improving the throughput of computers [15], by using parald dements so
that severd ingtructions can be worked on simultaneoudy. The basic idea of pipelining is o begin carrying out a
new ingruction before execution of an old one is completed. When pipelining is used the number of steps in the
basic agorithm is less important than fitting the steps into a framework so that they can be performed in paralld
[16].

Fig. 4 sets out one way of pipdining Blowfish, where the data are broken into two halves (High and Low).

[anfai] 4+ [en]me] g [ai]e]| + [dn]aL]

al+bl || abl g ol _.| alsel 4 dl

carm T:L
| _.,| all+hli+erl |_, ahll el | |:||nrll—dll-\r|1|

[(aan] | [Cxwi] | [arm2]| | ks |

Fig. 4: Implementing pipelining with two paralel streams

These are processed separately (with delayed arithmetic carries — shown in the figure as carry) and then combined at
the end of processng. Even though more clock cycles are needed, the speed of the clock can be greatly improved,
because smaller adders are required a each stage, with smdler interna propagation delays. Note tha the increase of
speed requires an increese in Slicon areg, asregisters are required to store intermediate results.

19

Ali and Noras

31 Scheduling and Allocation

The Blowfish system architecture has been anadysed and designed using two interdependent procedures, scheduling
and dlocation. Scheduling is the process of assgning datapath operations to avalable time periods, and dlocation
is the asxocidtion or binding of datapath operations to particular hardware resources. Different scheduling and
allocation strategies can have significant effects upon the performance and hardware requirements of designs[17].

32 Different Word Size Processing

Processing for different word sizes has to be andysed to see the possibility of pipeline implementation of the design.
Initidly, the 32-hit level, which is used in the software verson, is anadysed.

321 32-bit Processing

The origind software verson uses 32-hit level processng. There are two different methods for implementation in
32-hit level processing: paralld and sevid.

3211 Parald

The firs method is by pardld implementation of the F function, so that the F function in each round together with
the XOR in X i will require just one clock cycle, with no register to store intermediate results.

Fg. 5 shows the required configuration, which would require two 32-bit adders and two 32-hit XOR gates, and
hence, a large aea of dlicon. Also, the cock would be dow snce each 32bit adder will have 32 leves of
propagating carry, with propagation delays according to the type of adder used [18].

Sl

SE| b j
s3]

w4

Bl
T

xR

Fig. 5: Implementation of the F-function

A second approach is to compute the F function seridly, i.e. every operation in a different clock cycle. In this
approach, a R-hit register is required to store the previous partia operation. This method requires sx clock cycles
for each round of Ffunction. The critica timing diagram for this gpproach is shown in Fig. 6.

PROCESS TIME(cycles)
ACCM=51[a] i
ACCM= ACCM + S2[b] i+l
ACCM=ACCM ® S3[c] i+2
ACCM= ACCM +S4[d] i+3
ACCM=ACCM & XR i+
ACCM=0 (CLEAR) i+5

Fig. 6: Critical timing for F function computed seridly

A 32-bit adder/XOR is dso required for this approach. The total time required to encrypt a block of data with a 16
round Feistel network will be 114 clock cycles:

20

Optimal Datapath Design for a Cryptographic Processor: The Blowfish Algorithm

6 (cyclesfor each F function)
times 16 (for each round of encryption) =96

+18 (1 clock cyclefor each XOR
withthe P Arrays) =18

= total of 114 clock cycles.

Table 1 shows the datapath for 32-hit processng. Blank boxes are unused (or wasted) dates. However, since the
longest process is 32-bit addition the clock period has to be long enough to enable the propagation delay on the
adder.

Table 1: Datapath for 32-bit processing

Clock P array Sbhox Addition XORing Addition XORing
XOR Reading with XR
1 PLA X1
2 al,bl,cldl
3 al+bl=abl
4 abl+cl=abcl
5 abcl+d1=Foutl
6 Foutl A xR1=xL2
7 P2A xL2
8 a2,h2,c2,d3
9 a2+b2=ab2
10 ab2+c2=abc2
11 abc2+d2=Fout2
12 Fout2 A xR2=xL3
13 P3A X3
14 a3,b3,c3,d3

In both the pardldl and the serid approach, it is observed that the 32-bit addition influences the period of clock
cycde and as a result dows down the speed of processing. Also, we have seen there is no possbility of
implementing pipelining in the process. This is because the next round of the Feistel network cannot start before the
last stage of the previous process finishes.

322 16-bit Processing

The 32-bit word processng could be broken into 16-bit level processing. In this leve, the idea of pipdining can be
implemented. All the 32-bit words have to be broken into 16-bit words, so this resembles the sysem shown in Fig.
4. This gpproach will take six clock cycles to process a 16hit word as in the 32-bit leve. The next 16-bit word will
be processed in padle, delayed by one clock cycle. However, before the end of the second 16-bit word process,
the third 16-hit word processing can dart. Therefore, the same number of clock cycles as in the 32-bit levd will be
required.

Since the addition is only 16-hit, the propagation delay caused by the propagating carry will be less than the 32-bit
propagation ddays. As a reault, the clock speed can be faster and consequently the total processing time will be
less, approximately hdf that of the 32bit levd. However, andyss of the daa flow diagram shows that the
proportion of unused dates to used states is large. Moreover, 16-bit addition has sill has a dow propagating carry.

Thus, we continue to consider the 8-bit level.

21

Ali and Noras

323 8-bit Processing

At this leved, al the processing words are 8hit. By bresking down to byte level, there are more chances to fill the
pipeine densdy. This gpproach will aso take six clock cycles for processng an 8bit word. The next three 8-bit
data will be processed in pardlel, each delayed one clock cycle from the previous levd. Table 2 shows the dataflow
for 8bit processing. Even though the first round takes a tota of ten clock cycles, the next round will only teke six
dock cyclesasin 32-hit and 16-hit designs.

Table2: Datapath for 8-hit processing

Clock P array Sbox Addition XORing Addition XORing
XOR Reading with xR
1 PL1A - - - - -
xL11
2 P12 A all, al2, - - -
xL12 al3, al4
3 P13 A b1, b12, al1+0,a12+0, - - -
xL13 b13, bl4 al3+0,a14+0
4 P14 A cl1, c12, A11+bl11l - - -
xL14 cl3, c14 =ab11 &cr11"
5 - di1, d12, al2+hl2+cr11” abl1A c11 - -
di3, di4 =abl2 &cr12" =abcll
6 - - al3+bl13+cr12" ab12A c12 abcl1+d11 -
=ah13 &cr13" =abcl2 =abcd11+crll
7 - - ald+bl4+cri4" a13A c13 | abcl2+d12+erll | abodll A xR11
=ab14 =zbcl3 =abod12 =21
8 P21 A - - abl4A c14 | abcl3+d13+arl? | abed12 A xR12
xL21 =abcld =abod13 =xL22
9 P22 A a2l, a22, - - abcl4+di4+crl3 | abed13A xR13
xL22 az3, a24 =abcd14 =23
10 P23 A b21, b22, a21+0,a22+0, - - abcd14 A xR14
xL23 b23, b24 a23+0,a24+0 =xL24
11 P24 A c21,¢c22, A21+b21 - - -
xL24 €23, c24 =zb21 &cr21"
12 - d21, d22, a22+b22+cr21" ab21A 21 - -
d23, d24 =ab22 &cr22" =abc21
13 - - a23+h23+cr22" ab22 A 22 abc21+d21 -
=ah23 & cr23" = =abcd21+cr21'
14 - - a24+hR4+cr24" a23A 23 | abc22+d22+cr21' | abod21 A xR21
=ab24 = =abcd22 =31

However, the processing time will be faster dnce dl the logic will be 8-bit, including the additions, where the
maximum carry will only propagate through eight stages of an adder. This will make the whole process at least 4
times faster than the 32-hbit leve, but 8-bit processng has additiona advantages over 32-bit and 16-hit because
routing will be less congested, making the hardweare design faster and smaller.

Thisdesign will be andysed in detail and will be further modified to give its best performance.
33 Moadification of the Feistel Network

In the origind Feistd network, the output of the F function is XORed with XL before XORed with the next P array.
For example, the output of the F function from stage one, Foutl, is XORed with XL then XORed with P2. This
means the P array XORing cannot take place before the output of the F function appears. However, the processing
time can be fagter if the XORing with the P arays is performed while the F function is till being evaluated. For
this, we have to modify the Feistel network so that the XORing with the next P array is performed before the output
of the F function appears. Thisis possible because XORing is commutative:

22

Optimal Datapath Design for a Cryptographic Processor: The Blowfish Algorithm

AABAC=AACAB

Another modification is to add a dummy function FoutOl. The reason for this is to make the agorithm looks
identical from the first round till the find round. This will make the decryption process, which tekes the key in
reverse order, much esser. An extra hardware requirement for the modified verson is the addition of a few extra
registers to keep the vaue of the previous stage' s outputs for use in the next stage.

34 Combining S-boxes

From the datapath in Table 2, we can see that only one Shox is beng reed a each dock cyde These Shoxes
contain 256 locations each identified by different addresses, thus 1024 locations in total, each location being a 32-bit
word. Therefore, these Shoxes can be combined into a RAM with 1024 locations. This will make the design eeder
aswe do na have to control each RAM separately. The block diagram of the smplified systemisshownin Fig. 7.

(L =

L]

%
goge

Fg. 7: 8bit processing in modified structure
35 Datapath and Reducing the Number of Registers

After combining the Sboxes and modifying the Feistd Network, data flow analysis is repeated to see the new
datapath. Table 3 shows the modified data flow. We can see that the efficiency of hardware is increesed since the
unused states decrease. Findly, we note that not al registers are used al the tme, so that the number of the
registers can be reduced a every stage except for the find one. For the first leve, only one register is needed since
only one byte of data, a maximum, is kept in any clock cycle For the second levd, two registers are needed, and
three for the third leve. The find leve registers cannot be reduced since there are 4 regigers used in maximum a
certain clock cycles. Thetotal number of the registers used is decreased from 16 registersto 10 registers.

40 IMPLEMENTATION

Best peformance in terms of speed and hardware efficiency is given by 8bit processng. Thus, the hardware
configuration at thislevel was andysed before the integration for complete system.

An initid atempt to mgp to hardware suggests the following sequence of operations. Firdtly, the P Array is XORed
with the XR (right haf of the data) and the result is XR'. Then XR' is XORed with the output of the accumulator
(Fout) from the previous clock cycle. The reault is then fed into RAM that will act as the RAM addressing vaues.
A copy of these vaues is kept in the register to be used for subsequent rounds. The output of the RAM is kept in
registers before it is fed into ADDERL together with the carry from the previous module. The process continues
with XORing, and legtly, addition usng ADDER2. This cycle then continues for the successive rounds.

23

Ali and Noras

Table 3: Modified datapath for 8 -bit processing

Clock P array XORing Shox Addition XORing Addition
XOR with xR Reading
1 P11 A xLO1 - - - - -
=xL11=xR21'
2 P12 A xLO2 Fout01 A xR21' - - - -
=xL12=xR22? =xR21
3 P13 A xL03 Fout02 A xR22 all, al2, - - -
=xL13=xR23' =xR22 al3, al4
4 P14 A xL04 Fout03 A xR23 b11, b12, al1+0,a12+0, - -
=xL14=xR24' =xR23 b13, b14 al3+0,a14+0
5 - Fouto4 A xR24 cli, cl12, all+b1l - -
=xR24 cl3, cl4 =ab11 &cr11"
6 - - d11, d12, al2+b12+cr11" abl1 A -
di3, d14 =ab12 &cr12" cll=abcl1
7 P21 A xR11 - - al3+b13+cr12" ab12 A abcl1+d11
=xR11' =ab13 &cr13" cl2=ax12 =Fout11 +cr1l'
8 P22 A xR12 Foutll A xR11' - ala+bl4+crid” ab13 A abc12+d12+cr1l’
=xR12 =xL21=xR31 =abl4 cl3=abxl3 =Fout12+ cr12'
9 P23 A xR13 Fout12 A xR12 a1, a2, - abl4 A abc13+d13+cr12
=xR13 =xL22=xR32 a23, a24 cld=abxl4 =Fout13+ cr13
10 P24 A xR14 Fout13 A xR13 b21, b22, a21+0,a22+0, - abcl4+d14+cr13
=xR14' =xL23=xR33 b23, b24 a23+0,a24+0 =Fout14
11 - Fout14 A xR14 c21,¢c22, a21+h21 - -
=xL24=xR34 €23, c24 =ab21 &cr21"
12 - - d21, d22, a22+h22+cr21" ab21 A -
d23, d24 =ab22 & cr22" 21=abc21
13 P31 A xR21 - - a23+b23+cr22" ab22 A abc21+d21
=xR21' =ab23 &cr23" c22=abc22 =Fout21+cr21'
14 P32 A xR22 Fout21 A xR21' - a24+b24+cr23" ah23 A abc22+d22+cr21’
=xR22' =xL31=xR41 =ah24 c23=ahc23 =Fout22+ cr22'

However, the design can be smplified by using the same hardware block for multipe functions. The following
functions are performed in different clock cycles:

additionin ADDER1,

XOR with output from ADDER1 and Register,
additionin ADDER2, and

XOR between first XOR and Fout.

APwd PR

All of these operations can be done by using just one hardware block tha combines the XOR and ADD functions.
We introduce a device cdled ADD/XOR, which is essentidly a cusom ALU. By doing this not only will the
system look simpler but the area of slicon for fabricating the system will dso decresse.

41 The ADD/XOR Block

Since the adder is an important factor in influencing the speed of the dgorithm, it is very important to andyse the
types of adders available. Generdly, the type of adder is determined by the way it handles the carry. The man
types of adders are Ripple Carry Adder and Look Ahead Carry Adder.

411 RippleCarry Adder

Ripple carry adders are adders where the carry output of each full-adder [19] is connected to the carry input of the
next highe-order stage. The sum and carry of any successive stage are not stable until all previous caries have

occurred, which lead to time delay in the addition process. For an adder of length more than a very few bits, this
delay islikely to be unacceptable.

24

Optimal Datapath Design for a Cryptographic Processor: The Blowfish Algorithm

412 Carry-lookahead

One method of diminating this ripple carry delay is cdled carry-lookahead. This method is based on two functions
of the full-adder, cdled the cary-generae and cary-propagate functions [19]. Carry-generae is expressed as an
AND function and cary-propagate is expressed as an OR function. Using this method, the carry does not propagate
through al the adders but passes through the AND and OR gates, which are built usng the concept of carry
propagate and carry generate. The trade-off for this method b increased area and complexity. Thus, the method is
not extendable indefinitely to very long adders, as the complexity, and hence, propagation of the additiona logic
increases. In the present case, it would be unfeasible to build 16-bit or 32-bit adders, athough the method is idedl
for an 8bit system.

4.1.3 Combining XOR and Adder Functions

The adder circuit can be modified into the ADD/XOR device in the system. Consder a 2dage adder [19]. The
Boolean eguation for digit 1 of the addition is:

|’th§@e éi:Ai A B A Cin_l

If the incoming carry is ignored, then the result will be only the XOR function between numbers A and B, 0 the
modified adding equation needed to implement the F function would be:

i’th stage ai=A/A B/A (Gn1 & mode

Here, & means Boolean AND. Clearly, if mode = O for dl the stages, then, & = A A B. In this way, the adder
circuit can be modified into an ADD/XOR device. Since we are using the same device for different functions we
need to introduce a register that will act as an accumulator to hold deta from the previous stage before feeding it to
the next stage. Fig. 8 showsthe block diagram of this combined structure.

If mode=1: ADD/XOR functions as an adder
If mode=0: ADD/XOR functions asabank of XOR gates.
Inpat | Sum _— In i
Jinpaut2 ACCH
ABYDE R r>
NOR
1 | — ik
Wl N, i

Fg. 8: Combined adder and accumulator

Fig. 9 shows the modified hardware configuration for 8-bit processing with the ADD/XOR included.

Fig. 9: Hardware configuration for 8 bit processing

25

Ali and Noras

42 Mapping the System

The complete system is mapped into 4 independent modules that are linked by the RAM and the caries, with the P
aray split into different sections. This is possible since the P array has its own addressing and can be divided for
each module. No modification isrequired for other parts of the design since al other processing is 8-bit.

43 Throughput Estimation

Exact throughput can be obtained only when the complete system is mapped into a particular technology. However,
it is useful to obtain estimaes, usng the speed of clock cycle as presented by Sommerville [20]. The 32-hit leve
needs 144 clock cycles to encrypt 64 bits of data [see section 3.21.1]. For the 8hit levd, the number of cdock
cycles is dso 144. However, since the processing will be 8hits rather than 32-hits, latency, which is the measure of
processing rate [21], will be a least 4 times less than the 32bit verson. This is because there is less propagating
cary in the adders (even when using carry-lookahead). Also, there will be less routing complexity, whether using
VLS or programmablelogic.

50 CONCLUSON

Although Blowfish is a fast encryption agorithm, hardware implementation can make the system throughput much
higher. After vdidating the dedgn by extensve Smuation, we made provisond mapping of the to Xilinx
progranmable logic FPGAs, to show that the complexity of design can be accommodated with this technology,
udng off-chip RAM for highest performance. This is an important practica consideration, since it alows security
hardware to be built into digitd systems without the expense of VLS desgn and fabrication, and to permit design
upgrades at low cost.

The paper proves the feashility of a pipdined hardware implementation of Blowfish. Pipelining can be
implemented in 16-bit and 8-hit sizes with the later offering greater linearity. An 8bit system appears promising
because of speed enhancement with little expansion of slicon area The predicted throughput is at least 4 times
greater than the origind 32-bit version.

REFERENCES

[4 S. A. Vengtone, A. Menezes, Handbook of Cryptography. CRC Press, 1996.

[2 Bruce Schneer, Applied Cryptography: Protocols, Algorithms, and Source Code in C. 2nd Edition, New
Y ork, John Wiley and Sons, Inc. 1996, pp. 21-27.

[3 Bruce Schneier, “Desription of a New Vaiable-Length Key, 64-Bit Block Cipher (Blowfish)”, in
Cambridge Security Workshop on Fagt Software Encryption, Cambridge, UK, December 9-11, 1993, pp.
191-204.

4 Dr. Dobbs, “Blowfish - One Year Later”,
<http:/AMmvw.counter pane.comybfdobsoyl.htmi> , 1996.

[5] Bruce Schneer, Applied Cryptography: Protocols, Algorithms, and Source Code in C. 2nd Edition, New
Y ork, John Wiley and Sons, Inc. 1996, p. 339.

[6] R. Zimmerman, A. Curiger, H. Bonnenberg, H. Kaedin, N. Felber and W. A. Fitcher, “177 Mb/s VLS
Implementation of the International Data Encryption Algorithm”. IEEE Journal of Solid Sate Circuits, Vol.
29, No. 3, 1994, pp. 303-307.

[7] H. Feistd, and W. A. Notz, “Some Cryptographic Techniques for Machine to Machine Data
Communication”, in Proceedingsof the|EEE, Val. 63, No. 11, 1975, pp. 1545-1554.

(8 H. Feistd, “Cry ptography and Computer Privacy”. Scientific American Val. 228, No. 5, 1973, pp. 15-23.

[9 H. Feistd, “Block Cipher Cryptographic System”. U. S Patent #3798605, 19 March 1974.

26

Optimal Datapath Design for a Cryptographic Processor: The Blowfish Algorithm

[10] H.Fegd, “Cryptography and Computer Privacy”. Scientific American, Vol. 228, No. 5, 1973, pp. 15-23.
[11] W. Peter, Disappearing Cryptography. Massachusetts, AP Professional, 1996.

[12] Bruce Schneier, Applied Cryptography: Protocols, Agorithms, and Source Code in C. 2nd Edition, New
Y ork, John Wiley and Sons, Inc. 1996, p. 347.

[13] B.Henry and P. Fred, Cipher Systems: The Protection of Communication. London, Northwood Books, 1982.

[14] Bruce Schneer, Applied Cryptography: Protocols, Algorithms, and Source Code in C. 2nd Edition, New
Y ork, John Wiley and Sons, Inc. 1996, pp. 466-468.

[15] H. Taub, Digital Circuits and Microprocessors. New York, McGraw-Hill Book Company, 1992, pp. 403-
405.

[16] T.C. Bartee, Compute Architecture and Logic Design. Singapore, McGraw -Hill, 1991, pp. 476-479.

[177 P. G. Padlin and J. P. Knight, “Algoithms for High-Level Synthesis’. IEEE Design and Test of Computers,
Dec. 1989, pp. 15-28.

[18] D. Lewin, Theory and Design of Digital Computer Systems. Surrey, Eng. Thomas Nelson and Sons Ltd.
1980, pp. 131-152.

[19] T. L. Floyd, Digital Fundamentals. 4th Edition, New York, Macmillan Publishing Company, 1990, pp. 239
243.

[20] I. Sommeville Software Engineging. 3rd Edition, London, Addison-Wedey Publishing Company, 1989, p.
308.

[21] Bruce Schneier, “Block Cipher Speed Comparison”,
< http:/AMmwv.counter pane.com/speed .htmi>, Feb. 1997, Accessed 5 April 1997.

BIOGRAPHY

Noohul Basheer Zain Ali ganed a Diploma in Electronic Enginearing from Universti Teknologi Malaysia in 1995,
and graduated with BEng (Honours) in Electronic, Communication and Computer Engineering in 1997 from the
University of Bradford, UK. He is currently studying at the Renssdaer Polytechnic Ingtitute, New York, US, for a
MSc in Computer Systems. From 19982000 he worked for Petronas, and is currently a Lecturer in the Department
of Hlectricd and Electronic Engineering, Universti Teknologi Petronas, Bandar Seri Iskendar, 31750, Tronoh,
Perak, Maaysa His current research interests are logic design, DSP and VLS implementation for Artificid
Intelligence.

James McKenzie Noras graduated with BSc (Physcs) from St Andrews University (1973), PhD (Semiconductor
Physicg from St Andrews University (1978) and MSc (Mathematics) from Open University (1995). From 1987, he
has been a lecturer in the Depatment of Electronic and Electricd Engineering, Bradford Universty, UK, where he
is presently Chairman of the Undergraduste Courses Academic Board. He is a member of the VCE in Persond and
Mohile Communications, with research interests in DSP for reconfigurable mobile communications.

27

