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ABSTRACT

The boundary integral method is employed to model the
dynamic behavior of the 3D spherical bubble.  It has been
solved on the Sequent Symmetry S5000 SE30 computer to
better understand the opportunities and challenges the
parallel processing presents.  Analyses of the parallel
performance of the approximation to the potential at
certain external points as well as the normal derivatives of
the potential on the surface of the bubble were generated
using linear representations of the surface and the
functions.  In these calculations, 4, 6 and 8 Gauss points
were used in the integration on 4, 8, 16 32 and 64
segments.  Results from this study demonstrate that parallel
computing greatly conserves the computational effort and is
shown to be an effective tool for several problems related to
bubble dynamics.

Keywords: Boundary integral method, Shared memory,
Bubble dynamics, Parallel computing

1.0 INTRODUCTION

The Boundary Integral Method (BIM) which sometimes
referred to as the Boundary Element Method (BEM)  is  a
well establish technique for the solution of problems in
engineering and applied science as described by [21] and
[18].  The BIM is a technique which often presents
important advantages over domain type solutions since it
provides a great economy in computational efforts by
discretizing only the boundary of the domains.
Consequently, much smaller systems of equations are to be
solved.  However for complex geometry, as in the three-
dimensional case, dense meshes are required so that quite a
large system of equations still remains, which make the
solving step slow.

Development of parallel computer has received
considerable attention by users of BIM.  As described by
[5], there are essentially three phases in BIM.

(i) The matrix set-up phase
(ii) The solution of linear equation phase
(iii) The calculation of external points phase.

The first parallel implementation was described in the
literature by [13].  Symm’s implementation, on the ICL
DAP, comprised an indirect approach with constant
elements for the solution of the Dirichlet problem in a
circle.  Since then there has been a considerable increase in
the interest in the use of parallel architectures.

Various authors have described parallel computations only
for certain aspects of the boundary integral method.  In the
early attempts, most workers concentrated on the linear
equation solution phase.  Parallel solution of the system of
equations in the area of micro hydrodynamics was done by
[9].  Complete fine-grained implementation, in which all
phases exploit the parallelism, are described by [2], [3] and
[4], who considered a variety of linear and quadratic
element implementations of potential problems on the ICL
DAP.  The potential problem, applied to problems with a
free surface, has been considered by [10] using a network
of Sun workstations run in parallel using the Parallel
Virtual Machine (PVM) parallel toolkit.  A parallel
implementation of a quadratic element approach to the
solution of axis-symmetric elastostatic problems is given by
[12].

The last decade has seen a great resurgence of bubble
research using boundary integral method due to the
growing realization of the importance of bubbles and
bubble phenomena in science and technology as described
by [8], [11], [14] and [15].  However none has been
discussed on the parallel implementation of the bubble
dynamics using the boundary integral method on a shared
memory multiprocessor system.  The goal of this paper is to
analyze the parallel performance of the 3D spherical bubble
using boundary integral method on a shared memory
computer.  This work was carried out on a Sequent
Symmetry S5000 SE30 computer with ten processors using
C language with parallel library.  Section 2 gives the
overview architecture of the Sequent SE30, which is a
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MIMD multiprocessor system.  Section 3 discusses the
Boundary Integral Method and the spherical bubble using
boundary integral method.  Section 4 discusses the parallel
algorithm of the spherical bubble and deals with it
performance analysis.  Section 5 provides concluding
remarks.

2.0 MIMD ARCHITECTURE – SEQUENT SE30

Sequent Symmetry S5000 SE30 (also known as Sequent
SE30) is a MIMD shared memory multiprocessor system.
The shared memory machine, sometimes called the tightly-
coupled system, has a set of processing elements (PEs) and
a pool of memory available to all processors ([24], [17],
[22] and [16]).  The processors have access to a large global
random access memory of which they have the same view.
The software processes, executing on different processors,
co-ordinate their activities by reading and modifying data
value in the shared-memory.  The co-ordination is achieved
via different mechanisms that synchronize attempts to
access the shared data.  Processors are provided with a
small fast local memory, in the form of data registers or
cache.  Access to the global memory is either via a high-
speed bus or a switching network.  Fig. 2.1 shows a
simplified diagram of a shared memory parallel computer.

As described in [23], Sequent SE30 is a multiprocessor
system comprising from two to ten 66 or 100 MHz Intel
Pentium microprocessors on a dual-processor circuit board.
Each Pentium microprocessors is coupled with a high-
performance, two-megabyte secondary cache memory to
support the CPU’s 8-kilobyte on-chip data and instruction
caches.  System memory (RAM) is expandable to 3.5
gigabytes when the 100-MHz processors are used
exclusively.

Fig. 2.1: A typical shared memory architecture

Disk storage is expandable to 940 gigabytes using the
QCIC-E disk subsystem.  The I/O capabilities of the SE30
are VMEbus-based, supporting up to 176 direct
asynchronous serial connections, 32 high-speed
synchronous connections, or 11 Ethernet connections.  Fig.
2.2 illustrates the interconnections of the components of
Sequent SE30 system.

The Sequent Highly Scalable Bus (HSB) is the primary
communication path for the processors, memory boards,
and I/O subsystems.  This bus operates at both 10 MHz (for
address and request packets) and at 30 MHz (for data
packets) and provides a 64-bit data path multiplexed with a
32-bit address path.  The HSB can achieve a peak data
transfer rate of 240 megabytes per second.  The system
backplane also includes a 1-bit serial bus called the System
Link and Interrupt Controller (SLIC) bus.  The SLIC bus is
used to exchange low-level data packets between the CPUs
and other subsystems.

Sequent SE30 processor board contains two complete CPU
systems.  Each CPU system consists of an Intel Pentium
CPU, a high-performance secondary cache memory to
supplement the CPU’s onboard cache memory, and support
circuitry for the interface to the system bus.

The Sequent SE30 High Density Memory Controller board,
installed in the HSB card cage, contains 64, 256, or 512
megabytes of system memory.

Sequent SE30 systems run DYNIX/ptx, Sequent’s POSIX-
compliant implementation of the UNIX System V operating
system, and are binary-compatible with all Symmetry
computer systems running DYNIX/ptx.

Fig. 2.2: Sequent Symmetry S5000 SE30 architecture

3.0 BOUNDARY INTEGRAL METHOD

3.1 Formulation

To illustrate the boundary integral formulation, consider

Laplace equation 02 =∇ φ  in some domain Ω .  The

starting point of an equivalent integral formulation is to
consider the appropriate fundamental solution for the
Laplace equation.  The boundary integral method is based

Mem

P

Mem Mem Mem

Interconnection Network

. . .

. . .
1

P
2

P
3

P
n

autonomy processors

shared memory

Control Panel Processor Boards High  Dens i t y  MemoryMemory Expension

HSB Contro l ler  Board

SCLIC Bus

Highly Scalable Bus

Modem

Printer

C o n s o l e

C S M  B o a r d
QCIC-W o r  QCIC-E  Boards

Ethernet Connector

SCSI Bus



Implementation of Parallel Boundary Integral Method on Spherical Bubble Dynamics Using Shared Memory Computer

3

on Green’s formula, which can reformulate the potential
problem as the solution of a Fredholm integral equation.
According to [14], for any sufficiently smooth function φ
which satisfies the Laplace equation with a domain Ω
having piecewise smooth surface S, Green’s formula can be
written as in [7] and [1].

where p ∈ Ω  + S , q ∈ S , ∂ / ∂n is the normal derivative
outward from S, and
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Equation for either the potential φ or the normal derivatives
of the potential ∂φ/∂n if the other is specified yielded by
choosing point p on the surface S.  Once both are known on
S, equation (1) can be used to generate φ at any interior
point p.

3.2 Axis-symmetric Form of the Integrals

Using cylindrical polar coordinates with ),0,( 00 zrp =
and ),,( zrq θ=  respectively,

If the surface S is parameterized by the arc length variable ξ

and

where

and K(k), E(k) are the complete elliptic integrals of the first
and second kind.  Approximation for these functions is
available in [6] in the form

where

and P, Q, R, and S are tabulated polynomials.

3.3 Surface Approximation

First of all, representations for the surface of the bubble, the
potential and its derivatives on the surface need to be
chosen.  These choices can be independent, but as the
movement of the surface is computed using the potential
and its derivatives, both should be considered together and
will be called functions.  In the description below, a plane
section through the axis of the symmetry of the bubble is
taken, and rotational symmetry about the axis is
understood.

Constant Approximation

For the constant segments considered here, the surface is
assumed to be divided into N elements.  The potential and
its normal derivative constant over each element and equal
to the value at the mid-element node.
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If a linear approximation is used then the bubble surface is
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∂φ/∂n are assumed to be single valued at the end points of
the linear segments.  If the segment is parameterized by ξ in
the range (0,1), we can define

and use the isoparametric approximations for both the

surface and the functions.  At the jth segment, jS , the

surface is defined by

With the values of φ  and ∂φ/∂n on jS  defined by

Since the collocation points are moved to the end points of
the interval, it will yield N+1 equations in the N+1
unknowns.  The integral on each segment can be written
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3.4 Numerical Integration

Green’s Integral formula is solved numerically by writing
equation (1) in the matrix form as in (11) where H and G
are matrices and φ and ∂φ/∂n can be calculated by solving a
set of linear equations.  The evaluation of the elements of
the matrices H and G is performed numerically.  Normally
Gauss Legendre quadrature is adequate, unless the

collocation point iP  is within the segment jS , or is one of

its end points, in which case the integrand is singular and
must be treated specially.  The singular integrals are
evaluated by subtracting a logarithmic term to remove the

singularity, then using a quadrature scheme incorporating
the logarithm to complete the integration.  Further details of
the numerical integration may be found in [14].

3.5 Numerical Test

Initially the spherical bubble is centered at (r,z)=(0,0) of
radius 1.0 in an infinite medium.  A uniform potential φ = 1
is prescribed on the surface of the bubble.  Approximation
to the potential at certain external points are generated as
well as the normal derivatives of the potential on the
surface of the bubble using N= 4,8,16,32 and 64 segments.
The exact solution of the potential is given by

2/122 ][
1
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=φ  and the exact normal derivative is

given by 1−=
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∂
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φ
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4.0 PARALLEL IMPLEMENTATION

4.1 Loop Level Parallelism

Loops are a rich source of parallelism.  Executing loop
iteration in parallel on a multiprocessor system will
improve the execution of a program.  The iteration of a loop
are considered as independent tasks and are scheduled for
execution on a shared memory multiprocessor system using
some loop scheduling strategy.  There are two main
categories of algorithm to schedule loop iteration: Static
and dynamic.  Static scheduling requires no communication
between processes and is generally used when you know
that the computing time is approximately the same for each
iteration of your loop.  Static scheduling assigns iteration to
the processors at compile-time.  Each processor knows
exactly which iterations it should execute before the
program is invoked and, therefore, there is no scheduling
overhead.  For example, processor 0 executes iterations 1,
P+1, 2P+1,…, processor 1 executes iterations 2, P+2,
2P+2,…, and so on, where P is the number of processors.
The main disadvantage of static scheduling is load
imbalance as described by [19] which causes some
processors to remain idle while others are busy.  This
imbalance can cause by difference in iteration execution
times, or by differences in the number of iterations each
processor executes.

Dynamic scheduling attempts to reduce load imbalance by
having idle processors assign iterations to themselves at
run-time.  However, dynamic scheduling creates more
communication overhead than static scheduling because all
the processes must access a single shared task queue.

In this paper, the static scheduling is used based on three
reasons.  First, static scheduling results in lower execution
times than dynamic scheduling.  Second, static scheduling
can allow the generation of only one process per processor,
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reducing process creation, synchronization, and termination
overhead.  Third, static scheduling can be used to predict
the speedup that can be achieved by a particular parallel
algorithm on a target machine, assuming no preemption of
processes occurs.

4.2 Parallel Algorithm

In this paper, we are not going to address the problem
associated with the equation solution phase since the
solutions of linear equation using Gauss elimination with
partial pivoting have been widely discussed in the literature
([20], [24], [25], [26], [27]).  This paper will concentrate on
the matrix set up phase and the calculation of the external
point phase.  The parallel algorithm for the 3D spherical
bubble is shown in Fig. 4.2.1.

Fig. 4.2.1: Parallel Algorithm for 3D Spherical Bubble

The system equation set-up phase is a fine-grained process
comprising a set of three nested loops.  The inner loop, over
the Gauss points, contains the straightforward calculation of

the contribution to the coefficients ijH  and ijG .  The

intermediate loop is over the target elements, [j], and the
outer loop is over the base nodes, the collocation points [i].
When implementing on Sequent SE30 shared memory
processors, the two outer loops are affected simultaneously
in parallel and the inner loop only is performed
sequentially.  The parallel algorithm for the matrix set up
phase is shown in Fig. 4.2.2.

The calculation of the external point phase is comprising of
three nested loops.  The inner loop, over the Gauss points is
a sequential calculation of the approximation to the
potential.  The intermediate loop is over the target elements,
and the outer loop is over the external points.  Both the
outer loops are affected simultaneously in parallel.  The
parallel algorithm for the calculation of the external point
phase is shown in Fig. 4.2.3.

Fig. 4.2.2: Parallel Algorithm of Setup Phase

0: P3DSB Algorithm
1: {
2: Input data (# of boundary element, # of external

points, the x-y coordinates of the external
points,initial condition of the spherical bubble
centered at (r,z)=(0,0) with radius 1.0, theta=π/(#of
boundary elements)).

3: Shared memory allocation sets all matrices to
address newly allocated shared matrix.

4: Set the number of processors to run all the three
phases in parallel {

5: m_fork (setup_matrix).
6: m_fork(solve_linear_equation).
7: m_fork(compute_external_points).
8: m_kill_procs();
9: }

5.0: PSETUP Algorithm
5.1: {
/*Assembling G and H and form the system ax=b */
      id=m_get_myid(); /*get id of each processor */
    np=m_get_numprocs();/*get number of processors*/
5.2: for (i=id+1 to number of base node increment for
             every processors{ /*in parallel*/
         if (i==1 || i==n) {/*collocation points on the axis */
               k=n-2;
5.3:    for (js=1; js <=k; ++js){ /* parallel over the target
                 element*/
                 j=i+js;
             if (j>=n) j=j-nm1;
             if ( i==n) j=j-1;
             inlul(); /* sequential over the Gauss points */

            /* formation of coefficient ijH  and ijG */

}}
else{
k=n-3;
5.4: for (jj=1;jj<=k;++jj){/*parallel over the target
                                      element */
     j=i+jj;
     if (j>=n) j=j-nm1;
     inte();  /* sequential over the Gauss points  */

      /* formation of coefficient ijH  and ijG */

}}}
m_sync();  /*synchronization of all processes */

5.5: for (i=id+1 to number of base node increment for
             every processors{ /*in parallel*/
      if (i==1) {
      j=i;             /* parallel over the target elements   */
      inlul(); /* sequential over the Gauss points   */

      /* formation of coefficient ijH  and ijG */

        continue;
     }
     if (i==n) {
     j=n-1;   /*   parallel over the target elements  */
     inlul(); /* sequential over the Gauss points  */

     /* formation of coefficient ijH  and ijG */

     continue;
      }
       j=i-1;  /*  parallel over the target element   */
5.6: for (jk=1; jk<=2; ++jk) {
      if (jk == 1) {
      inlor()    /*  sequential over the Gauss points  */
      }
     else{
     inlol();   /*   sequential over the Gauss points  */
     }
       j=j+1;
    }
}

m_sync();  /*synchronization of all processes */

5.7: for (i=id+1 to number of base node
        increment for every processors{ /*in parallel*/
             h[i][i]=4.0*pi-h[i][i];
             dfi[i]=0.0;

for (j=1; j<=n; ++j)
      dfi[i]=dfi[i]+h[i][j]*fi[j];

       }
5.8: }
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Fig. 4.2.3: Parallel Algorithm for External Point Phase

4.3 Performance Analysis

The combination of parallel algorithm and parallel
architecture is known as a parallel system.  Qualitative
analysis is one way to evaluate the performance of parallel
system.  There are various metrics that can be used to
evaluate the performance of parallel systems under the
qualitative analysis.  The metrics are execution time,
speedup, and efficiency.

The execution time of a serial program (denoted sT ) is the

time elapsed between the beginning and the end of its
execution on a single processor.  The execution time of a

parallel program on p processors (denoted pT ) is the time

that elapses from when the first processor starts executing
on the problem to when the last processor completes
execution.

Speedup  is the measure of relative benefits of paralleling a
given application over sequential implementation.  There
are several ways of defining speedup.  [20] defined the
speed-up ratio on p processors as below:

pp TTS /0=

where 0T  is the time for the fastest serial algorithm for a

given problem.  However, the speed-up ratio that we use is
known as the algorithmic speed-up ratio on p processors
and it is defined as below:

pp TTS /1=

1T  is the time taken by the parallel implementation

executing on a single processor.  The above algorithm
speed-up ratio is the ratio of the time taken to solve a
problem on a single processor to the time required solving
the same problem on a parallel computer with p identical

processors.  Normally, 1T  is always exceeding the time

taken by 0T .

Efficiency (E) is a measure of the fraction of time that
processors speed doing useful work.  It is defined as the
ratio of speedup to the number of processors.  It can be
defined as:

P
S

E =

This measure provides an indication of the effective of the
p processors relative to the given algorithm.  A value of E
approximately equal to 1, for some  p, indicates that
algorithm A runs approximately p times faster using p
processors than it does with one processor.

4.4 Experimental Result

The performance of the algorithm was measured by
implementing both the serial and parallel versions in C with
parallel library.  The algorithm was run on the Sequent
SE30 MIMD shared memory computer with ten processors.

First we will look at the percentage of errors of the potential
φ and the normal derivatives ∂φ/∂n.  Errors are produced by
subtracting the numerical solution from the exact solution.
From Table 4.4.1, we can see that the percentage of errorφ
and ∂φ/∂n is decreasing as the number of segments is
increasing. We can say that the numerical result is
improving by using larger number of segments.  However,
this will lead to a longer execution time due to bigger size
of matrices.  This is also true for different numbers of
Gauss points, where as we increase the number of Gauss
points, the execution time is increasing.

Table 4.4.1: Sequential Results

4 Gauss Points
Number of
Segments

Sequential
Time(Seconds)

% error in φ % error in
∂φ/∂n

4 0.004136 2.46 13.3672
8 0.011908 0.629 3.1255

16 0.040232 0.159 0.7715
32 0.147489 0.04 0.1957
64 0.579267 0.01 0.0527

6 Gauss Points
Number of
Segments

Sequential
Time(Seconds)

% error in φ % error in
∂φ/∂n

4 0.005663 2.46 13.3627
8 0.017188 0.629 3.1205

16 0.058199 0.159 0.7664
32 0.213420 0.04 0.1907
64 0.826594 0.01 0.0477

8 Gauss Points
Number of
Segments

Sequential
Time(Seconds)

% error in φ % error in
∂φ/∂n

4 0.007551 2.46 13.3626
8 0.022519 0.629 3.1205

16 0.076445 0.159 0.7664
32 0.278622 0.04 0.1906
64 1.075892 0.01 0.0476

7.0: PEXTPOINT Algorithm
7.1: {
7.2: /*Calculation of the external point phase in parallel */
7.3:   For(k=id+1 to number of points increment for every
                number of processors) {

Sol_of_potential[k]=0.0;
7.4:     For(j=1 to number of segments) { /* in parallel */

inte(); /*sequential over the Gauss points */
calculation of potential(sol[k])

          }
7.5 sol[k]=sol[k]/(4.0*pi);
        }
7.6: }
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From Table 4.4.2, it is clearly shown that the time is
decreasing as we increase the number of processors.  This is
also true for different numbers of Gauss points.

Table 4.4.2: Parallel Execution Time

4 Gauss points
No
Seg

Number of Processors

1 3 5 7 9

4 0.004575 0.002627 0.002327 0.002721 0.002859
8 0.012170 0.005897 0.004198 0.005168 0.004759

16 0.039884 0.016981 0.012851 0.011770 0.010601
32 0.207970 0.080007 0.054520 0.043511 0.038995
64 0.571622 0.239573 0.149488 0.119989 0.103278

6 Gauss points
No
Seg

Number of Processors

1 3 5 7 9

4 0.006352 0.003254 0.002893 0.003043 0.003293
8 0.017545 0.007934 0.006450 0.006018 0.005832

16 0.057296 0.023327 0.017423 0.015479 0.013409
32 0.207970 0.080007 0.054520 0.043511 0.038995
64 0.811579 0.319298 0.198364 0.157592 0.133485

8 Gauss points
No
Seg

Number of Processors

1 3 5 7 9

4 0.007986 0.003991 0.003480 0.003703 0.003949
8 0.022559 0.010016 0.008088 0.007281 0.006645

16 0.074477 0.029384 0.021283 0.019337 0.016902
32 0.270178 0.101775 0.069344 0.053633 0.047436
64 1.048574 0.402817 0.247835 0.195707 0.164163

From Table 4.4.3, we can observe that the speedup is
approaching linearity but not growing really close to a
linear rate.

Table 4.4.3: Speedup

4 Gauss Points (Linear)
Number of ProcessorsNo of

Segments 3 5 7 9
4 1.74 1.97 1.68 1.6
8 2.06 2.47 2.35 2.56

16 2.35 3.10 3.39 3.76
32 2.60 3.81 4.78 5.33
64 2.39 3.82 4.76 5.53

6 Gauss Points (Linear)
Number of ProcessorsNo of

Segments 3 5 7 9
4 1.95 2.19 2.09 1.93
8 2.21 2.72 2.92 3.01

16 2.46 3.29 3.70 4.27
32 2.60 3.81 4.78 5.33
64 2.54 4.09 5.15 6.08

8 Gauss Points (Linear)
Number of ProcessorsNo of

Segments 3 5 7 9

4 2.00 2.29 2.16 2.02
8 2.25 2.79 3.10 3.39

16 2.53 3.50 3.85 4.41
32 2.65 3.90 5.04 5.70
64 2.60 4.23 5.36 6.39

Table 4.4.4  shows the corresponding efficiency of the
algorithm.  From the table we can see that the efficiency is
approaching 1 as the number of segments is increasing.

Table 4.4.4: Efficiency

4 Gauss Points
Number of ProcessorsNo of

Segments 3 5 7 9

4 0.58 0.39 0.24 0.18
8 0.69 0.49 0.34 0.28

16 0.78 0.62 0.48 0.42
32 0.87 0.76 0.68 0.59
64 0.80 0.76 0.68 0.61

6 Gauss Points
Number of ProcessorsNo of

Segments 3 5 7 9

4 0.65 0.44 0.30 0.21
8 0.74 0.54 0.42 0.33

16 0.82 0.66 0.53 0.47
32 0.87 0.76 0.68 0.59
64 0.85 0.82 0.74 0.68

8 Gauss Points
Number of ProcessorsNo of

Segments 3 5 7 9

4 0.67 0.46 0.31 0.22
8 0.75 0.56 0.44 0.38

16 0.84 0.70 0.55 0.49
32 0.88 0.78 0.72 0.63
64 0.87 0.85 0.77 0.71

Appendix A shows the graphical representation of Table
4.4.1, 4.4.2, 4.4.3 and 4.4.4.

5.0 CONCLUSION

The spherical bubble modules have been applied to the
Sequent S30 to study the parallel performance.  This study
showed that different numbers of processors could
significantly affect performance for different numbers of
segments and different numbers of Gauss points and the
suitability of the algorithm to massive parallelization was
shown.  From the results produced, we can see parallel
computing greatly conserves the computational effort and
an effective tool for bubble dynamics problems.
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APPENDIX A

Fig. A1:  Graphical representation of Table 4.4.1 Fig. A2:  Graphical representation of Table 4.4.2
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Fig. A3:  Graphical representation of Table 4.4.3 Fig A4: Graphical representation of Table 4.4.4
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