
Malaysian Journal of Computer Science, Vol. 13 No. 1, June 2000, pp. 1-11

1

IMPLEMENTATION OF PARALLEL BOUNDARY INTEGRAL METHOD ON SPHERICAL BUBBLE
DYNAMICS USING SHARED MEMORY COMPUTER

Rozita Johari
Mohd Yazid Md Saman

Mohamed Othman
Jabatan Sains Komputer

Jabatan Teknologi Komunikasi dan Rangkaian
Fakulti Sains Komputer dan Teknologi Maklumat

Universiti Putra Malaysia
43400 UPM Serdang
Selangor, Malaysia

email: rozita@fsas.upm.edu.my
yazid@fsas.upm.edu.my

Bachok Taib
Jabatan Matematik

Fakulti Sains dan Pengajian Alam Sekitar
Universiti Putra Malaysia

43400 UPM Serdang
Selangor, Malaysia

email: bachok@fsas.upm.edu.my

ABSTRACT

The boundary integral method is employed to model the
dynamic behavior of the 3D spherical bubble. It has been
solved on the Sequent Symmetry S5000 SE30 computer to
better understand the opportunities and challenges the
parallel processing presents. Analyses of the parallel
performance of the approximation to the potential at
certain external points as well as the normal derivatives of
the potential on the surface of the bubble were generated
using linear representations of the surface and the
functions. In these calculations, 4, 6 and 8 Gauss points
were used in the integration on 4, 8, 16 32 and 64
segments. Results from this study demonstrate that parallel
computing greatly conserves the computational effort and is
shown to be an effective tool for several problems related to
bubble dynamics.

Keywords: Boundary integral method, Shared memory,
Bubble dynamics, Parallel computing

1.0 INTRODUCTION

The Boundary Integral Method (BIM) which sometimes
referred to as the Boundary Element Method (BEM) is a
well establish technique for the solution of problems in
engineering and applied science as described by [21] and
[18]. The BIM is a technique which often presents
important advantages over domain type solutions since it
provides a great economy in computational efforts by
discretizing only the boundary of the domains.
Consequently, much smaller systems of equations are to be
solved. However for complex geometry, as in the three-
dimensional case, dense meshes are required so that quite a
large system of equations still remains, which make the
solving step slow.

Development of parallel computer has received
considerable attention by users of BIM. As described by
[5], there are essentially three phases in BIM.

(i) The matrix set-up phase
(ii) The solution of linear equation phase
(iii) The calculation of external points phase.

The first parallel implementation was described in the
literature by [13]. Symm’s implementation, on the ICL
DAP, comprised an indirect approach with constant
elements for the solution of the Dirichlet problem in a
circle. Since then there has been a considerable increase in
the interest in the use of parallel architectures.

Various authors have described parallel computations only
for certain aspects of the boundary integral method. In the
early attempts, most workers concentrated on the linear
equation solution phase. Parallel solution of the system of
equations in the area of micro hydrodynamics was done by
[9]. Complete fine-grained implementation, in which all
phases exploit the parallelism, are described by [2], [3] and
[4], who considered a variety of linear and quadratic
element implementations of potential problems on the ICL
DAP. The potential problem, applied to problems with a
free surface, has been considered by [10] using a network
of Sun workstations run in parallel using the Parallel
Virtual Machine (PVM) parallel toolkit. A parallel
implementation of a quadratic element approach to the
solution of axis-symmetric elastostatic problems is given by
[12].

The last decade has seen a great resurgence of bubble
research using boundary integral method due to the
growing realization of the importance of bubbles and
bubble phenomena in science and technology as described
by [8], [11], [14] and [15]. However none has been
discussed on the parallel implementation of the bubble
dynamics using the boundary integral method on a shared
memory multiprocessor system. The goal of this paper is to
analyze the parallel performance of the 3D spherical bubble
using boundary integral method on a shared memory
computer. This work was carried out on a Sequent
Symmetry S5000 SE30 computer with ten processors using
C language with parallel library. Section 2 gives the
overview architecture of the Sequent SE30, which is a

Johari, Saman, Taib and Othman

2

MIMD multiprocessor system. Section 3 discusses the
Boundary Integral Method and the spherical bubble using
boundary integral method. Section 4 discusses the parallel
algorithm of the spherical bubble and deals with it
performance analysis. Section 5 provides concluding
remarks.

2.0 MIMD ARCHITECTURE – SEQUENT SE30

Sequent Symmetry S5000 SE30 (also known as Sequent
SE30) is a MIMD shared memory multiprocessor system.
The shared memory machine, sometimes called the tightly-
coupled system, has a set of processing elements (PEs) and
a pool of memory available to all processors ([24], [17],
[22] and [16]). The processors have access to a large global
random access memory of which they have the same view.
The software processes, executing on different processors,
co-ordinate their activities by reading and modifying data
value in the shared-memory. The co-ordination is achieved
via different mechanisms that synchronize attempts to
access the shared data. Processors are provided with a
small fast local memory, in the form of data registers or
cache. Access to the global memory is either via a high-
speed bus or a switching network. Fig. 2.1 shows a
simplified diagram of a shared memory parallel computer.

As described in [23], Sequent SE30 is a multiprocessor
system comprising from two to ten 66 or 100 MHz Intel
Pentium microprocessors on a dual-processor circuit board.
Each Pentium microprocessors is coupled with a high-
performance, two-megabyte secondary cache memory to
support the CPU’s 8-kilobyte on-chip data and instruction
caches. System memory (RAM) is expandable to 3.5
gigabytes when the 100-MHz processors are used
exclusively.

Fig. 2.1: A typical shared memory architecture

Disk storage is expandable to 940 gigabytes using the
QCIC-E disk subsystem. The I/O capabilities of the SE30
are VMEbus-based, supporting up to 176 direct
asynchronous serial connections, 32 high-speed
synchronous connections, or 11 Ethernet connections. Fig.
2.2 illustrates the interconnections of the components of
Sequent SE30 system.

The Sequent Highly Scalable Bus (HSB) is the primary
communication path for the processors, memory boards,
and I/O subsystems. This bus operates at both 10 MHz (for
address and request packets) and at 30 MHz (for data
packets) and provides a 64-bit data path multiplexed with a
32-bit address path. The HSB can achieve a peak data
transfer rate of 240 megabytes per second. The system
backplane also includes a 1-bit serial bus called the System
Link and Interrupt Controller (SLIC) bus. The SLIC bus is
used to exchange low-level data packets between the CPUs
and other subsystems.

Sequent SE30 processor board contains two complete CPU
systems. Each CPU system consists of an Intel Pentium
CPU, a high-performance secondary cache memory to
supplement the CPU’s onboard cache memory, and support
circuitry for the interface to the system bus.

The Sequent SE30 High Density Memory Controller board,
installed in the HSB card cage, contains 64, 256, or 512
megabytes of system memory.

Sequent SE30 systems run DYNIX/ptx, Sequent’s POSIX-
compliant implementation of the UNIX System V operating
system, and are binary-compatible with all Symmetry
computer systems running DYNIX/ptx.

Fig. 2.2: Sequent Symmetry S5000 SE30 architecture

3.0 BOUNDARY INTEGRAL METHOD

3.1 Formulation

To illustrate the boundary integral formulation, consider

Laplace equation 02 =∇ φ in some domain Ω . The

starting point of an equivalent integral formulation is to
consider the appropriate fundamental solution for the
Laplace equation. The boundary integral method is based

Mem

P

Mem Mem Mem

Interconnection Network

. . .

. . .
1

P
2

P
3

P
n

autonomy processors

shared memory

Control Panel Processor Boards High Dens i t y MemoryMemory Expension

HSB Contro l ler Board

SCLIC Bus

Highly Scalable Bus

Modem

Printer

C o n s o l e

C S M B o a r d
QCIC-W o r QCIC-E Boards

Ethernet Connector

SCSI Bus

Implementation of Parallel Boundary Integral Method on Spherical Bubble Dynamics Using Shared Memory Computer

3

on Green’s formula, which can reformulate the potential
problem as the solution of a Fredholm integral equation.
According to [14], for any sufficiently smooth function φ
which satisfies the Laplace equation with a domain Ω
having piecewise smooth surface S, Green’s formula can be
written as in [7] and [1].

where p ∈ Ω + S , q ∈ S , ∂ / ∂n is the normal derivative
outward from S, and







∈

Ω∈
=

Spif

pif
pc

2

4
)()2(

Equation for either the potential φ or the normal derivatives
of the potential ∂φ/∂n if the other is specified yielded by
choosing point p on the surface S. Once both are known on
S, equation (1) can be used to generate φ at any interior
point p.

3.2 Axis-symmetric Form of the Integrals

Using cylindrical polar coordinates with),0,(00 zrp =
and),,(zrq θ= respectively,

If the surface S is parameterized by the arc length variable ξ

and

where

and K(k), E(k) are the complete elliptic integrals of the first
and second kind. Approximation for these functions is
available in [6] in the form

where

and P, Q, R, and S are tabulated polynomials.

3.3 Surface Approximation

First of all, representations for the surface of the bubble, the
potential and its derivatives on the surface need to be
chosen. These choices can be independent, but as the
movement of the surface is computed using the potential
and its derivatives, both should be considered together and
will be called functions. In the description below, a plane
section through the axis of the symmetry of the bubble is
taken, and rotational symmetry about the axis is
understood.

Constant Approximation

For the constant segments considered here, the surface is
assumed to be divided into N elements. The potential and
its normal derivative constant over each element and equal
to the value at the mid-element node.

dS

jS jqipj

N

j n
dS

jqip

N

j
jS nji ∫

−
∑
= ∂

∂=
−

∑
=

∫
∂
∂+

||
1)(

1
|

1
|

1
2)9(φφπφ

We can write (9) in matrix form as in [1]

∑
=

∑
= ∂

∂=+
N

j

N

j nijGjijHi
1 1

ˆ2)10(
φφπφ

Defining ijijij HH πδ2ˆ += (10) may be written as

n
GH ∂

∂
=

φ
φ)11(

Linear Approximation

If a linear approximation is used then the bubble surface is

replaced by a set of N linear segments jS with φ and

ξ

ξξ

ξξ
ξ

dkK

zzrr

d
dr

d
dz

r

dS
S qp

)(

2
1

]2)0)((2)0)([(

2
1

]2)(2))[((41

0||
1

)4(

−++

+

∫=∫
−

() dS
qp

q
S n

dS
qpn

q
S

ppc
||

1
))((

||

1
)()()()1(

−
∫

∂
∂

=
−∂

∂
∫+ φφφ

,ln)()()(

ln)()()()7(

xxSxRkE

xxQxPkK

−=

−=

),(
2

1)8(ξkx −=

2

1

]2)0(2)sin(2)0cos[(

1
|

1
|)3(

zzrrr

qp

−++−

=
−

θθ

2

1

]
2

2cos042)0(2)0[(

1

θ
rrzzrr −−++

=

)}(0
)(2

2

)(21

)(
]0

)(2
2

)0)(()0)(({[

1

0
2
3

]2)0)((2)0)([(

)(4
||

1
)5(

kKr
d
dz

kk

kE
r

d
dz

k
zz

d
dr

rr
d
dz

d

zzrr

r
dS

qpS n

ξξξξξ
ξξξξ

ξ

ξξ

ξ

+
−

−−−+

∫

−++

=
−

∫
∂
∂

2
)

0
)((

2
)

0
)((

0
)(4

)(
2

)6(
zzrr

rr

k
−++

=
ξξ

ξ
ξ

Johari, Saman, Taib and Othman

4

∂φ/∂n are assumed to be single valued at the end points of
the linear segments. If the segment is parameterized by ξ in
the range (0,1), we can define

and use the isoparametric approximations for both the

surface and the functions. At the jth segment, jS , the

surface is defined by

With the values of φ and ∂φ/∂n on jS defined by

Since the collocation points are moved to the end points of
the interval, it will yield N+1 equations in the N+1
unknowns. The integral on each segment can be written

where

n

j
ija

n

j
ija

jqip
js n
dS

qip
dkMdjSkijb

∂

∂
+

∂
−∂

=
−

∫
∂
∂

∫ ∫
−

=

φφ
φ

π

θξ
θξξ

2
1

1)
||

1
(

1

0

2

0 |),(|

1
)()16(

where

)
|),(|

1
(

1

0

2

0
)()17(

θξ

π
θξξ

qipn
dkMdjSkija

−
∫ ∫

∂
∂

=

3.4 Numerical Integration

Green’s Integral formula is solved numerically by writing
equation (1) in the matrix form as in (11) where H and G
are matrices and φ and ∂φ/∂n can be calculated by solving a
set of linear equations. The evaluation of the elements of
the matrices H and G is performed numerically. Normally
Gauss Legendre quadrature is adequate, unless the

collocation point iP is within the segment jS , or is one of

its end points, in which case the integrand is singular and
must be treated specially. The singular integrals are
evaluated by subtracting a logarithmic term to remove the

singularity, then using a quadrature scheme incorporating
the logarithm to complete the integration. Further details of
the numerical integration may be found in [14].

3.5 Numerical Test

Initially the spherical bubble is centered at (r,z)=(0,0) of
radius 1.0 in an infinite medium. A uniform potential φ = 1
is prescribed on the surface of the bubble. Approximation
to the potential at certain external points are generated as
well as the normal derivatives of the potential on the
surface of the bubble using N= 4,8,16,32 and 64 segments.
The exact solution of the potential is given by

2/122][
1
zr +

=φ and the exact normal derivative is

given by 1−=
∂
∂

n
φ

.

4.0 PARALLEL IMPLEMENTATION

4.1 Loop Level Parallelism

Loops are a rich source of parallelism. Executing loop
iteration in parallel on a multiprocessor system will
improve the execution of a program. The iteration of a loop
are considered as independent tasks and are scheduled for
execution on a shared memory multiprocessor system using
some loop scheduling strategy. There are two main
categories of algorithm to schedule loop iteration: Static
and dynamic. Static scheduling requires no communication
between processes and is generally used when you know
that the computing time is approximately the same for each
iteration of your loop. Static scheduling assigns iteration to
the processors at compile-time. Each processor knows
exactly which iterations it should execute before the
program is invoked and, therefore, there is no scheduling
overhead. For example, processor 0 executes iterations 1,
P+1, 2P+1,…, processor 1 executes iterations 2, P+2,
2P+2,…, and so on, where P is the number of processors.
The main disadvantage of static scheduling is load
imbalance as described by [19] which causes some
processors to remain idle while others are busy. This
imbalance can cause by difference in iteration execution
times, or by differences in the number of iterations each
processor executes.

Dynamic scheduling attempts to reduce load imbalance by
having idle processors assign iterations to themselves at
run-time. However, dynamic scheduling creates more
communication overhead than static scheduling because all
the processes must access a single shared task queue.

In this paper, the static scheduling is used based on three
reasons. First, static scheduling results in lower execution
times than dynamic scheduling. Second, static scheduling
can allow the generation of only one process per processor,

ξξ

ξξ

=

−=

)(2

1)(1)12(

M

M

)(2)(11)(

)(2)(11)()13(

ξξξ

ξξξ

MjzMjzz

MjrMjrr

+−=

+−=

)(2)(1
1

)(

)(2)(11)()14(

ξ
φ

ξ
φ

ξ
φ

ξφξφξφ

Mn
j

Mn
j

n

MjMj

∂

∂
+∂

−∂
=∂

∂

+−=

n
j

ijbn
j

ijb
jqip

jS n
dS ∂

∂
+∂

−∂
=−

∫
∂
∂ φφφ

2
1

1||
1

)15(

Implementation of Parallel Boundary Integral Method on Spherical Bubble Dynamics Using Shared Memory Computer

5

reducing process creation, synchronization, and termination
overhead. Third, static scheduling can be used to predict
the speedup that can be achieved by a particular parallel
algorithm on a target machine, assuming no preemption of
processes occurs.

4.2 Parallel Algorithm

In this paper, we are not going to address the problem
associated with the equation solution phase since the
solutions of linear equation using Gauss elimination with
partial pivoting have been widely discussed in the literature
([20], [24], [25], [26], [27]). This paper will concentrate on
the matrix set up phase and the calculation of the external
point phase. The parallel algorithm for the 3D spherical
bubble is shown in Fig. 4.2.1.

Fig. 4.2.1: Parallel Algorithm for 3D Spherical Bubble

The system equation set-up phase is a fine-grained process
comprising a set of three nested loops. The inner loop, over
the Gauss points, contains the straightforward calculation of

the contribution to the coefficients ijH and ijG . The

intermediate loop is over the target elements, [j], and the
outer loop is over the base nodes, the collocation points [i].
When implementing on Sequent SE30 shared memory
processors, the two outer loops are affected simultaneously
in parallel and the inner loop only is performed
sequentially. The parallel algorithm for the matrix set up
phase is shown in Fig. 4.2.2.

The calculation of the external point phase is comprising of
three nested loops. The inner loop, over the Gauss points is
a sequential calculation of the approximation to the
potential. The intermediate loop is over the target elements,
and the outer loop is over the external points. Both the
outer loops are affected simultaneously in parallel. The
parallel algorithm for the calculation of the external point
phase is shown in Fig. 4.2.3.

Fig. 4.2.2: Parallel Algorithm of Setup Phase

0: P3DSB Algorithm
1: {
2: Input data (# of boundary element, # of external

points, the x-y coordinates of the external
points,initial condition of the spherical bubble
centered at (r,z)=(0,0) with radius 1.0, theta=π/(#of
boundary elements)).

3: Shared memory allocation sets all matrices to
address newly allocated shared matrix.

4: Set the number of processors to run all the three
phases in parallel {

5: m_fork (setup_matrix).
6: m_fork(solve_linear_equation).
7: m_fork(compute_external_points).
8: m_kill_procs();
9: }

5.0: PSETUP Algorithm
5.1: {
/*Assembling G and H and form the system ax=b */
 id=m_get_myid(); /*get id of each processor */
 np=m_get_numprocs();/*get number of processors*/
5.2: for (i=id+1 to number of base node increment for
 every processors{ /*in parallel*/
 if (i==1 || i==n) {/*collocation points on the axis */
 k=n-2;
5.3: for (js=1; js <=k; ++js){ /* parallel over the target
 element*/
 j=i+js;
 if (j>=n) j=j-nm1;
 if (i==n) j=j-1;
 inlul(); /* sequential over the Gauss points */

 /* formation of coefficient ijH and ijG */

}}
else{
k=n-3;
5.4: for (jj=1;jj<=k;++jj){/*parallel over the target
 element */
 j=i+jj;
 if (j>=n) j=j-nm1;
 inte(); /* sequential over the Gauss points */

 /* formation of coefficient ijH and ijG */

}}}
m_sync(); /*synchronization of all processes */

5.5: for (i=id+1 to number of base node increment for
 every processors{ /*in parallel*/
 if (i==1) {
 j=i; /* parallel over the target elements */
 inlul(); /* sequential over the Gauss points */

 /* formation of coefficient ijH and ijG */

 continue;
 }
 if (i==n) {
 j=n-1; /* parallel over the target elements */
 inlul(); /* sequential over the Gauss points */

 /* formation of coefficient ijH and ijG */

 continue;
 }
 j=i-1; /* parallel over the target element */
5.6: for (jk=1; jk<=2; ++jk) {
 if (jk == 1) {
 inlor() /* sequential over the Gauss points */
 }
 else{
 inlol(); /* sequential over the Gauss points */
 }
 j=j+1;
 }
}

m_sync(); /*synchronization of all processes */

5.7: for (i=id+1 to number of base node
 increment for every processors{ /*in parallel*/
 h[i][i]=4.0*pi-h[i][i];
 dfi[i]=0.0;

for (j=1; j<=n; ++j)
 dfi[i]=dfi[i]+h[i][j]*fi[j];

 }
5.8: }

Johari, Saman, Taib and Othman

6

Fig. 4.2.3: Parallel Algorithm for External Point Phase

4.3 Performance Analysis

The combination of parallel algorithm and parallel
architecture is known as a parallel system. Qualitative
analysis is one way to evaluate the performance of parallel
system. There are various metrics that can be used to
evaluate the performance of parallel systems under the
qualitative analysis. The metrics are execution time,
speedup, and efficiency.

The execution time of a serial program (denoted sT) is the

time elapsed between the beginning and the end of its
execution on a single processor. The execution time of a

parallel program on p processors (denoted pT) is the time

that elapses from when the first processor starts executing
on the problem to when the last processor completes
execution.

Speedup is the measure of relative benefits of paralleling a
given application over sequential implementation. There
are several ways of defining speedup. [20] defined the
speed-up ratio on p processors as below:

pp TTS /0=

where 0T is the time for the fastest serial algorithm for a

given problem. However, the speed-up ratio that we use is
known as the algorithmic speed-up ratio on p processors
and it is defined as below:

pp TTS /1=

1T is the time taken by the parallel implementation

executing on a single processor. The above algorithm
speed-up ratio is the ratio of the time taken to solve a
problem on a single processor to the time required solving
the same problem on a parallel computer with p identical

processors. Normally, 1T is always exceeding the time

taken by 0T .

Efficiency (E) is a measure of the fraction of time that
processors speed doing useful work. It is defined as the
ratio of speedup to the number of processors. It can be
defined as:

P
S

E =

This measure provides an indication of the effective of the
p processors relative to the given algorithm. A value of E
approximately equal to 1, for some p, indicates that
algorithm A runs approximately p times faster using p
processors than it does with one processor.

4.4 Experimental Result

The performance of the algorithm was measured by
implementing both the serial and parallel versions in C with
parallel library. The algorithm was run on the Sequent
SE30 MIMD shared memory computer with ten processors.

First we will look at the percentage of errors of the potential
φ and the normal derivatives ∂φ/∂n. Errors are produced by
subtracting the numerical solution from the exact solution.
From Table 4.4.1, we can see that the percentage of errorφ
and ∂φ/∂n is decreasing as the number of segments is
increasing. We can say that the numerical result is
improving by using larger number of segments. However,
this will lead to a longer execution time due to bigger size
of matrices. This is also true for different numbers of
Gauss points, where as we increase the number of Gauss
points, the execution time is increasing.

Table 4.4.1: Sequential Results

4 Gauss Points
Number of
Segments

Sequential
Time(Seconds)

% error in φ % error in
∂φ/∂n

4 0.004136 2.46 13.3672
8 0.011908 0.629 3.1255

16 0.040232 0.159 0.7715
32 0.147489 0.04 0.1957
64 0.579267 0.01 0.0527

6 Gauss Points
Number of
Segments

Sequential
Time(Seconds)

% error in φ % error in
∂φ/∂n

4 0.005663 2.46 13.3627
8 0.017188 0.629 3.1205

16 0.058199 0.159 0.7664
32 0.213420 0.04 0.1907
64 0.826594 0.01 0.0477

8 Gauss Points
Number of
Segments

Sequential
Time(Seconds)

% error in φ % error in
∂φ/∂n

4 0.007551 2.46 13.3626
8 0.022519 0.629 3.1205

16 0.076445 0.159 0.7664
32 0.278622 0.04 0.1906
64 1.075892 0.01 0.0476

7.0: PEXTPOINT Algorithm
7.1: {
7.2: /*Calculation of the external point phase in parallel */
7.3: For(k=id+1 to number of points increment for every
 number of processors) {

Sol_of_potential[k]=0.0;
7.4: For(j=1 to number of segments) { /* in parallel */

inte(); /*sequential over the Gauss points */
calculation of potential(sol[k])

 }
7.5 sol[k]=sol[k]/(4.0*pi);
 }
7.6: }

Implementation of Parallel Boundary Integral Method on Spherical Bubble Dynamics Using Shared Memory Computer

7

From Table 4.4.2, it is clearly shown that the time is
decreasing as we increase the number of processors. This is
also true for different numbers of Gauss points.

Table 4.4.2: Parallel Execution Time

4 Gauss points
No
Seg

Number of Processors

1 3 5 7 9

4 0.004575 0.002627 0.002327 0.002721 0.002859
8 0.012170 0.005897 0.004198 0.005168 0.004759

16 0.039884 0.016981 0.012851 0.011770 0.010601
32 0.207970 0.080007 0.054520 0.043511 0.038995
64 0.571622 0.239573 0.149488 0.119989 0.103278

6 Gauss points
No
Seg

Number of Processors

1 3 5 7 9

4 0.006352 0.003254 0.002893 0.003043 0.003293
8 0.017545 0.007934 0.006450 0.006018 0.005832

16 0.057296 0.023327 0.017423 0.015479 0.013409
32 0.207970 0.080007 0.054520 0.043511 0.038995
64 0.811579 0.319298 0.198364 0.157592 0.133485

8 Gauss points
No
Seg

Number of Processors

1 3 5 7 9

4 0.007986 0.003991 0.003480 0.003703 0.003949
8 0.022559 0.010016 0.008088 0.007281 0.006645

16 0.074477 0.029384 0.021283 0.019337 0.016902
32 0.270178 0.101775 0.069344 0.053633 0.047436
64 1.048574 0.402817 0.247835 0.195707 0.164163

From Table 4.4.3, we can observe that the speedup is
approaching linearity but not growing really close to a
linear rate.

Table 4.4.3: Speedup

4 Gauss Points (Linear)
Number of ProcessorsNo of

Segments 3 5 7 9
4 1.74 1.97 1.68 1.6
8 2.06 2.47 2.35 2.56

16 2.35 3.10 3.39 3.76
32 2.60 3.81 4.78 5.33
64 2.39 3.82 4.76 5.53

6 Gauss Points (Linear)
Number of ProcessorsNo of

Segments 3 5 7 9
4 1.95 2.19 2.09 1.93
8 2.21 2.72 2.92 3.01

16 2.46 3.29 3.70 4.27
32 2.60 3.81 4.78 5.33
64 2.54 4.09 5.15 6.08

8 Gauss Points (Linear)
Number of ProcessorsNo of

Segments 3 5 7 9

4 2.00 2.29 2.16 2.02
8 2.25 2.79 3.10 3.39

16 2.53 3.50 3.85 4.41
32 2.65 3.90 5.04 5.70
64 2.60 4.23 5.36 6.39

Table 4.4.4 shows the corresponding efficiency of the
algorithm. From the table we can see that the efficiency is
approaching 1 as the number of segments is increasing.

Table 4.4.4: Efficiency

4 Gauss Points
Number of ProcessorsNo of

Segments 3 5 7 9

4 0.58 0.39 0.24 0.18
8 0.69 0.49 0.34 0.28

16 0.78 0.62 0.48 0.42
32 0.87 0.76 0.68 0.59
64 0.80 0.76 0.68 0.61

6 Gauss Points
Number of ProcessorsNo of

Segments 3 5 7 9

4 0.65 0.44 0.30 0.21
8 0.74 0.54 0.42 0.33

16 0.82 0.66 0.53 0.47
32 0.87 0.76 0.68 0.59
64 0.85 0.82 0.74 0.68

8 Gauss Points
Number of ProcessorsNo of

Segments 3 5 7 9

4 0.67 0.46 0.31 0.22
8 0.75 0.56 0.44 0.38

16 0.84 0.70 0.55 0.49
32 0.88 0.78 0.72 0.63
64 0.87 0.85 0.77 0.71

Appendix A shows the graphical representation of Table
4.4.1, 4.4.2, 4.4.3 and 4.4.4.

5.0 CONCLUSION

The spherical bubble modules have been applied to the
Sequent S30 to study the parallel performance. This study
showed that different numbers of processors could
significantly affect performance for different numbers of
segments and different numbers of Gauss points and the
suitability of the algorithm to massive parallelization was
shown. From the results produced, we can see parallel
computing greatly conserves the computational effort and
an effective tool for bubble dynamics problems.

REFERENCES

[1] C. A. Brebbia, The Boundary Element Method for
Engineers, London, Pentech Press, 1978.

[2] A. J. Davies, “The Boundary Element Method on
The ICL DAP”, Parallel Computing, Vol. 8, 1988,
pp. 348-353.

[3] A. J. Davies, Quadratic Isoparametric Boundary
Elements on the ICL DAP - in Boundary Elements X,
ed Brebbia, C.A., Vol. 3, pp. 657-666, Springer-
Verlag, 1988.

Johari, Saman, Taib and Othman

8

[4] A. J. Davies, Mapping the Boundary Element
Method to the ICL DAP – in CONPAR 88, eds
Jesshope, C. R. and Reinartz, K. D., 1989, pp. 230-
237, Cambridge University Press.

[5] A. J. Davies, Parallel Computing for the Boundary
Element Method - in High-Performance Computing
in Engineering. Application to Partial Differential
Equation, eds Power, H. and Brebbia, C. A, Vol. 2,
pp. 239-279, Computational Mechanic Publications,
1995.

[6] C. Hasting Jr. Approximation for Digital Computers,
Princeton University Press, Princeton, N. J, 1955.

[7] M. A. Jaswon and G. T. Symm, Integral Equation
Methods in Potential Theory and Elastostatic,
London, Academic Press, 1977.

[8] J. R. Blake, J. M. Boulton-Stone, and R. P. Tong,
Boundary Integral Methods for Rising, Bursting and
Collapsing Bubbles, in BE Applications in Fluid
Mechanics, edited by H. Power,1995, Vol. 4, pp. 31-
72.

[9] S. Kim and M. Amann, Simulation of Micro-
structure Evolution on High-Performance Parallel
Computer Architectures: Communication
Scheduling Strategies for CDL-BIEM-in Boundary
Element Technology VII, eds Brebbia, C. A. and
Ingber, M, Elsevier, 1992, pp. 863-872.

[10] P. S. Ramesh,, H-W. Hsu, P. L-F. Liu, and M. H.
Lean, BEM Simulation of Breaking Waves in a
Distributed Computing Environment. Paper
presented at IABEM-92, University of Colorado, U.
S., 1992.

[11] P. B. Robinson and J. R. Blake, Dynamics of
Cavitation Bubble Interactions In Bubble Dynamics
and Interface Phenomena. Eds. Blake, J. R. and
Thomas, N. H. 1994, pp. 55-64.

[12] B. Song, R. Gay and B. Parsons, “Parallel
Processing of Quadratic Boundary Elements”
Engng. Anal. with Boundary Elements, Vol. 11,
1993, pp. 305-311.

[13] G. T. Symm, “Boundary Elements on a Distributed
Array Processor”, Engng. Anal., Vol. 1, 1984, pp.
162-165.

[14] B. Taib, Boundary Integral Method Applied to
Cavitation Bubble Dynamics, PhD Thesis,
University of Wollongong, New South Wales,
Australia, 1985.

[15] Y. Cao, W. W. Schultz, and R. F. Beck, “Three
Dimensional Desingularized Boundary Integral
Method for Potential Problems”, Int. J. Num.
Method Fluids, Vol. 12, 1991, pp. 785-803.

[16] S. G. Akl, The Design of Parallel Algorithms,
Prentice Hall, 1989.

[17] G. S. Almasi and A. Gottlieb, Highly Parallel
Computing 2nd Edition. New York, The Benjamin
Cummings Pub. Co., Ltd, 1994.

[18] P. K. Banerjee, The Boundary Element Method
Methods in Engineering, McGraw-Hill Book
Company, London, 1994.

[19] C. J. Beckmann and C. D. Polychronopoulus. “The
Effect of Scheduling and Synchronization Overhead
on Parallel Loop Performance”. CSRD Report No.
1111, Center For Supercomputing Research and
Development, Univ. of Illinois at Urbana-
Champaign, 1991.

[20] T. L. Freeman and C. Phillips, Parallel Numerical
Algorithms, England, Prentice Hall, 1992.

[21] I, Kosztin and K. Schulten, “Boundary Integral
Method for Stationary States of Two-Dimensional
Quantum Systems”. International Journal of
Modern Physics C , Vol. 8, No. 2, 293-325, 1997.

[22] R. H. Perrott, Parallel Programming. Wokingham,
Addison Wesley Inc., 1987.

[23] Sequent Computer System, Sequent Multiprocessor
Architecture Overview. Sequent Computer System,
Inc., 1995.

[24] B. Wilkinson and C. M. Allen, Parallel
Programming: Technique and Applications Using
Networked Workstations and Parallel Computers.
New Jersey, Prentice Hall, 1999.

[25] R. Abdullah, Design and Analysis of Numerical
Algorithms for the Solution of Linear Systems on
Parallel and Distributed Architectures. PhD Thesis,
Loughborough University , United Kingdom, 1997.

[26] M. J. Quinn, Parallel Computing: Theory and
Practice, McGraw-Hill, 1994.

[27] B. P. Lester, The Art of Parallel Programming,
Prentice Hall, 1993.

Implementation of Parallel Boundary Integral Method on Spherical Bubble Dynamics Using Shared Memory Computer

9

APPENDIX A

Fig. A1: Graphical representation of Table 4.4.1 Fig. A2: Graphical representation of Table 4.4.2

1 3 5 7 9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Number of processors

E
x

e
c

u
ti

o
n

 t
im

e
 (

s
e

c
o

n
d

s
)

4
G

P

4 segments

8 segments

16 segments

32 segments

64 segments

1 3 5 7 9
0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

Number of processors

E
x
e
c
u
tio

n
 t
im

e
 (
s
e
c
o
n
d
s
)
6
G

P

4 segments

8 segments

16 segments

32 segments

64 segments

1 3 5 7 9
0

0.2

0.4

0.6

0.8

1

1.2

0

0.2

0.4

0.6

0.8

1

1.2

Number of processors

E
x
e

c
u

ti
o

n
 t

im
e

 (
s
e

c
o

n
d

s
)

8
G

P

4 segments

8 segments

16 segments

32 segments

64 segments

4 8 16 32 64
0

2

4

6

8

10

12

14

16

0

2

4

6

8

10

12

14

16

Number of segments

%
 e

rr
o

r
fo

r
n

o
rm

a
l
d

e
ri

v
a

ti
v
e

s

4 Gauss Point

6 Gauss Point

8 Gauss Point

4 8 16 32 64
0

0.5

1

1.5

2

2.5

3

0

0.5

1

1.5

2

2.5

3

Number of segments

%
 e

rr
o
r

fo
r

p
o
te

n
tia

l

4 Gauss Point

6 Gauss Point

8 Gauss Point

4 8 16 32 64
0

0.2

0.4

0.6

0.8

1

1.2

0

0.2

0.4

0.6

0.8

1

1.2

Number of segments

E
x
e

c
u

ti
o

n
 t
im

e
 (

s
e

c
o

n
d

s
) 4 Gauss Point

6 Gauss Point

8 Gauss Point

Johari, Saman, Taib and Othman

10

Fig. A3: Graphical representation of Table 4.4.3 Fig A4: Graphical representation of Table 4.4.4

1 3 5 7 9
0

2

4

6

8

10

0

2

4

6

8

10

Number of processors

S
p

e
e

d
u

p
 (

s
e

c
o

n
d

s
)

4
G

P

4 segments

8 segments

16 segments

32 segments

64 segments

ideal

1 3 5 7 9
0

0.2

0.4

0.6

0.8

1

1.2

0

0.2

0.4

0.6

0.8

1

1.2

Number of processors

P
a

ra
lle

l
E

ff
ic

ie
n

c
y
 4

G
P

4
segments

8
segments

16
segments

32
segments

64
segments

1 3 5 7 9
0

0.2

0.4

0.6

0.8

1

1.2

0

0.2

0.4

0.6

0.8

1

1.2

Number of processors

P
a

ra
lle

l
E

ff
ic

ie
n

c
y
 6

G
P

4
segments

8
segments

16
segments

32
segments

64
segments

1 3 5 7 9
0

0.2

0.4

0.6

0.8

1

1.2

0

0.2

0.4

0.6

0.8

1

1.2

Number of processors

P
a
ra

lle
l E

ff
ic

ie
n
cy

 8
G

P

4
segments

8
segments

16
segments

32
segments

64
segments

1 3 5 7 9
0

2

4

6

8

10

0

2

4

6

8

10

Number of processors

S
p

e
e

d
u

p
 (

s
e

c
o

n
d

s
)

8
G

P

4 segments

8 segments

16 segments

32 segments

64 segments

ideal

1 3 5 7 9
0

2

4

6

8

10

0

2

4

6

8

10

Number of processors

S
p

e
e

d
u

p
 (

s
e

c
o

n
d

s
)

6
G

P

4 segments

8 segments

16 segments

32 segments

64 segments

ideal

Implementation of Parallel Boundary Integral Method on Spherical Bubble Dynamics Using Shared Memory Computer

11

BIOGRAPHY

Rozita Johari obtained her M.Sc in Computer Science
from Illinois Institute of Technology, Chicago in 1987, and
currently pursuing her PhD at Universiti Putra Malaysia.
Her main research areas include parallel computing and
operating system.

Mohd Yazid Mohd Saman obtained his PhD in Parallel
Processing from Loughborough University UK in 1993.
Research interests include parallel processing, simulation,
computer networks and computer graphics.

Bachok M Taib is an Associate Professor and Founding
Director of the Software Development Institute, Universiti
Putra Malaysia. He holds a PhD degree (1986) in
numerical analysis from University of Wollongong, New
South Wales, Australia, MSc in numerical analysis (1977)
from University of Reading, United Kingdom and
B.Sc(Hons)(1974) in mathematics from the National
University of Malaysia.

Mohamed Othman completed his PhD from University
Kebangsaan Malaysia in 1999. Currently, he is a lecturer at
the Department of Communication Technology and
Networks, Faculty of Computer Science and Information
Technology, University Putra Malaysia. His research
interests include parallel computing, high speed network
computing (cluster computing), artificial intelligence,
expert system design, scientific computing, and program-
ming in logic (parallel).

