
Malaysian Journal of Computer Science, Vol. 12 No. 2, December 1999, pp. 19-26

19

 HYBRID SHEAR-WARP RENDERING

M. Nordin Zakaria
Multimedia Department

Universiti Putra Malaysia
43400 UPM Serdang, Selangor, Malaysia

email: nordinz@fsas.upm.edu.my

N. Selvanathan
Faculty of Computer Science and

Information Technology
Universiti Malaya

email: selva@fsktm.um.edu.my

ABSTRACT

Shear-warp rendering is a fast and efficient method for
visualizing a volume of sampled data based on a
factorization of the viewing transformation into a shear and
a warp. In shear-warp rendering, the volume is resampled,
composited and warped to obtain the final image. Many
applications, however, require a mixture of polygonal and
volumetric data to be rendered together in a single image.
This paper describes a new approach for extending the
shear-warp rendering to simultaneously handle polygonal
objects. A data structure, the zlist-buffe, is presented. It is
basically a multilayered z-buffer. With the zlist-buffer, an
object-based scan conversion of polygons requires only a
simple modification of the standard polygon scan-
conversion algorithm. This paper shows how the scan
conversion can be integrated with shear-warp rendering of
run-length encoded volume data to obtain quality images in
real time. The utility and performance of the approach
using a number of test renderings is also discussed.

Keywords: Volume Rendering, Polygon Rendering,
Shear-Warp Factorization

1.0 INTRODUCTION

Integrated rendering of polygon and volume data finds
applications in numerous problems. Rhinosurgeons need to
visualize the air flow in the human nose backdrop against
the physical anatomy. Engineers need to be able to
visualize material defects recorded using ultrasound
together with CAD-generated geometrical objects. Scanned
data of a patient’s anatomy can be converted to a
mathematical solid model of the bone or joint that needs
repair. Doctors can use these models as visualisation tools
and as dimensional references when designing CAD models
of implants. Furthermore, virtual reality for medical
simulation and training requires mixtures of geometric and
sampled data to be rendered together in order to achieve
effective photorealism.

A number of approaches have been described for integrated
polygon-volume rendering. Two classes of approaches can
be identified:
1) transforming the data to a uniform representation, i.e.

from geometric to volumetric representation or vice
versa.

2) preserving the data in its original representation, and
merging the results of one or more rendering processes.

A common example of the first approach is voxelization [8,
9], a process of scan-conversion from geometric
representation into volumetric form. The reverse process,
converting from volumetric data to geometric
representation typically employs a surface-extraction
algorithm such as the Marching Cube algorithm [16, 17].
Both approaches require binary classification of the volume
data, and are subject to aliasing, in the form of spurious,
disconnected or missing surfaces or features.

The second approach, commonly known as hybrid
rendering, preserves the original representations, hence
avoiding conversion artifacts. Z-merging [10] is one
instance of such approach. The algorithm creates two z-
buffer maps from separate renderings of volume and
geometric data. A single image is then formed by depth-
sorting and compositing the two separately rendered
images. This method cannot correctly render translucent
polygons interpersed with the volume data.

Ray-merging is another of the hybrid rendering approach.
Goodsell, Mian and Olson [6] first render geometric data
with z-buffering. Rays are then casted into the volume
data, and the volume is sampled at regular interval along
the rays. For each ray, using the z-buffer, samples are
partitioned into a sequence for which each element is closer
than the rendered geometric data, and another sequence for
which each element is further. Merging is then done in a
manner which is conceptually similar to that in z-merging.
And as is z-merging, it fails to account for translucency.

Levoy [15] casts rays into the volume. The volume is
sampled at regular interval along the ray. In Levoy’s
approach, however, all intersections between the ray and
the polygons in the environment are independently
computed and shaded. Samples due to volume sampling
and that due to ray-polygon intersection are then depth-
sorted together and composited to compute the value of a
single pixel in the viewing plane. As in any conventional
ray-caster, due to the need for ray traversal, random access
to volumetric data, and intersection calculation with
surfaces, rendering time is slow and increases with the
complexity of the geometry. Sobierajski and Kaufman [19]
extend the concept of volumetric ray casting to ray tracing,
using secondary rays. A common ray is used in the
computation of intersection with both geometric and

Zakaria and Selvanathan

20

volumetric data. Intersections along rays are resolved by
type, and contributions due to the intersection computed
accordingly. While hybrid ray tracing produces the best
images, being capable of simulation of phenomena
normally associated with conventional ray tracing, it lacks
fast execution, especially with complex geometries.

Ebert et al [4] uses a scanline a-buffer rendering algorithm
for the surface-defined objects in the hybrid scene. An a-
buffer is first created for a scanline, containing a list for
each pixel of all the fragments that partially or fully cover
the pixel. Then, if a volume is active for a pixel, the extent
of volume rendering needed is determined. Actual volume
rendering follows, creating a-buffer fragments for separate
sections of the volume, terminating when full coverage of
the pixel by volume or surface-defined elements is
achieved. The volume a-buffer fragments are then sorted
into the a-buffer fragment list based on their average z-
depth values and the entire list is together rendered to
produce the final color of the pixel.

Rendering an intermixture of polygons and volumetric
object is relatively straightforward using texture-mapping
based algorithm. The method described in the SIGGRAPH
1997 course on advanced rendering with OpenGL [22] is
capable of rendering both opaque and transparent geometric
primitives embedded within the volume. However, texture-
mapping based volume rendering works efficiently and
robustly only in the presence of 3D texture-mapping
hardware. Furthermore, the method does not easily lend to
a flexible choice of sophisticated shading or classification
scheme.

An inherent feature in many of the hybrid rendering
approaches is the creation and composition of depth-sorted
lists of volume and polygon samples. For the algorithm to
be introduced in this paper, an instance of how such list can
be created and utilized for hybrid rendering based on the
shear-warp factorization is shown. The focus is on
rendering in the context of parallel-projection, the de facto
viewing scheme as far as volume rendering is concerned.
As for geometry or surface, this paper focuses on simple,
convex polygon. More complex geometry can be
simplified using a tessellation algorithm [18].

The rest of this paper is organized as follows: Section 2
discusses the motivation for using the shear-warp algorithm
as the foundation of a new hybrid-rendering algorithm.
Section 2.1 discusses the concept of shear-warp volume
rendering. Section 3 discusses the zlist-buffer data
structure, section 4 discusses polygon scan-conversion
using the zlist-buffer data structure. Section 5 discusses
how the volume samples are composited along with the
zlists in the zlist-buffer, and finally sections 6 and 7 present
the results and conclusion.

2.0 SHEAR-WARP VOLUME RENDERING

A number of approaches have been proposed for volume
rendering. The more dominant approaches can be
categorized into the following classes: ray tracing [14],
splatting [13], cell-projection [20], shear-warp [11], and
texture-based algorithms [1]. In designing a hybrid
rendering algorithm, the “pure” volume rendering algorithm
that was used as the base for our design must be fast, and
has reasonable image quality. By fast, it is meant that it
must perform within a few seconds for a typical medical
128 x 128 x 128 medical volume data on a desktop PC with
no graphics accelerator. As for the image quality, needless
to say, the rendering algorithm must generate image, which
for the general case is relatively free of artefacts.

The shear-warp volume-rendering algorithm was chosen.
VolPack [21], a volume rendering engine based on the
algorithm, proves to be good enough for the purpose,
requiring no exceptional hardware support, and with
rendering performance within expectation. The freely
available source code serves as a useful archive for reusable
codes in the task of building an experimental hybrid
visualization system.

2.1 Algorithm

The rendering problem in volume rendering involves the
projection of a volume data onto a 2D viewing or image
plane. The orientation of the viewing plane depends on the
viewing vector, and this in turn depends on the viewing
transformation. In shear-warp volume rendering, the
viewing transformation is factored into a shear and a warp.
To simplify the factorization, the volume must be
transposed so that the viewing vector is most parallel with
the third axis of the volume object co-ordinate system. The
transposition transforms the volume object co-ordinate
system to what is called the volume standard object co-
ordinate system. Both co-ordinate systems are right-
handed. A permutation matrix is used for the transposition
[12]. Fig. 1 depicts a volume object co-ordinate system.
The axis of co-ordinate system shown are labelled x, y, and
z. For the standard object co-ordinate system, they are
labelled i, j and k respectively.

The primary advantage of the shear-warp factorization is
that it simplifies the resampling required during the
projection. The factorization also enables the formulation
of the rendering algorithm as an image space technique
capable of utilizing both images and objects space

x

y

z

Fig. 1: Volume object co-ordinate system

Hybrid Shear-Warp Rendering

21

coherence. The algorithm uses an efficient scanline-order
traversal to stream through the data structures in storage
order, thereby reducing overhead incurred by accessing the
data structures. Runlength encoding of both the volume
and the image enables the traversal to skip over transparent
voxels and opaque pixels [11].

Fig. 2 shows the basic concept behind a shear-warp
volume-rendering algorithm. Within the standard object
coordinate system, the viewing vector is most parallel to the
third axis, but it needs not be perpendicular to the slices
orthogonal to the third axis. However, resampling volume
samples along a viewing ray is simplest when the ray is
perpendicular to the slices. The shear factor in the shear-
warp factorization creates this situation; it causes the
viewing vector to become perpendicular to the slices. The
shear is implemented by translating and resampling each
slice of the transposed volume data. Projection is then
trivial. If the k-component of the viewing vector is
positive, then the resampled slices are composited together
in a front-to-back order using the “over” to form an
intermediate image. Otherwise, the same operation still
takes place, but with the composition order being back-to-
front.

The intermediate image will appear distorted. This is
because the shear transformation is only a factor of the
entire viewing transformation. The remaining factor is a
general affine warp, and it can be implemented as a 2D
warp.

Full details on the shear-warp factorization and rendering,
including the mathematical derivations, can be found in the
study by Lacroute [12].

3.0 THE ZLIST DATA STRUCTURE

Volume rendering basically assumes a volume data to be a
colored semi-transparent gel-like object. Samples along
viewing rays are composited together to obtain the color
and opacity of pixels on the image plane. Surfaces are not
explicitly defined or detected. Instead, they can be

understood as a natural byproduct of the stepwise
accumulation of color and opacity along a ray [14]. To
integrate polygon rendering into a volume rendering
algorithm such that polygons are allowed to be transparent,
it is apparent that samples collected along a ray include not
just samples from the volume, but also samples from the
polygons. The samples can then be composited onto pixels
on the image plane in a depth-sorted manner.

Using a ray tracer, one could use independent rays to
collect samples from the volume, and samples from the
polygons [15], or one could use a common ray [19]. Since
the shear-warp volume rendering algorithm traverses
through the volume in storage order, projecting volume
samples onto the image plane, an object-order polygon
rendering scan-conversion is a natural candidate for
collecting samples from polygons. Instead of rendering
into a color buffer and a zbuffer, however, the polygon
scan-conversion will render polygons into what we call a
zlist-buffer.

A zlist-buffer is simply an array of pixels whereby each
pixel stores a list of z values. Each list is called a zlist.
Hence, in a zlist-buffer, each pixel may store more than one
z values. Since, in a hybrid rendering, for the general case,
it is not possible to tell the number of polygon samples
lying along a viewing ray, each zlist in a zlist-buffer is
appropriately a linked list.

The number of zlists in the zlist-buffer is then equal to the
size of the intermediate image. The size of each zlist is at
most the number of geometric points falling upon the
respective pixel. The structure of the zlist-buffer may be
diagrammatically viewed as in Fig. 3.

It should be pointed out that the notion of a zlist-buffer is
not a new idea. Similar structure has been reported [7, 2].
Zlist has been used for image-based rendering [7] and
transparency [2]. Here, in this paper, we are using it in the
context of hybrid volume rendering. In all reports we have
come across, zlist has always been depth-sorted, and stored
together in a two-dimensional array to form a sparse
volume.

volume slices

image plane

viewing rays

project

warp

shear

Fig. 2: Shear-Warp Volume Rendering

Zakaria and Selvanathan

22

Fig. 3 a) A z-buffer and b) a zlist-buffer. In a) each
blotted point indicates a z value, while in b) each
blotted point indicates the start of a zlist. Each star
in b) indicates a zlist node.

We render geometric objects into the zlist buffer before the
composition of the sheared volume slices. Each polygon
lying within the volume must be transposed and sheared
before the rendering. The same transposition and shear that
applies to the volume slices due to the shear-warp
factorization applies to the polygons. In other words, the
polygons must be transformed to the volume sheared object
co-ordinate.

In the implementation, each node in each zlist stores the
color and opacity of the point of the polygon or geometry
projected onto the corresponding pixel, in addition to its
depth value. Aside from the list of nodes itself, we also
associate a variable for each zlist to store the z value of the
last node in the list. As will be detailed out in the next
section, the variable, called z-flag, ensures that a zlist stops
growing once the total accumulative opacity in it reaches a
maximum opacity threshold [14]. The structure of a zlist
node is summarized in the following conceptual
representation:

ZlistNode =
Color: 32 bit integer
Opacity: 8 bit integer
Z: double
Next: pointer to ZListNode

Zlist =
z_flag: double
start: pointer to ZlistNode

ZlistBuffer =
Zlist[0..numpixels – 1]: array of zlist

4.0 SCAN-CONVERTING THE POLYGONS

In the standard scanline polygon scan-conversion algorithm
[5], two primary data structures are used to render the
polygon: an edge table (ET) and an active edge table
(AET). The ET is a list of buckets, one bucket per scanline.
Each bucket contains a list of polygon edges for which the
minimum y values is equal to the scanline number of the
corresponding bucket. The AET is a list of edges currently
being scan-converted. For each scanline, the algorithm
rasterizes the pixels between pairs of edges from the AET,
and then update the values – the current x, current normal
or color, and the current z or depth value – in each edge in
the AET.

 The zlist data structure requires a simple modification of
the rasterization phase. Instead of writing into a color-
buffer and a z-buffer, it is written into a zlist-buffer. This
step is done before volume composition. Hence, one other
way of viewing the zlist-buffer is a multilayer hybrid
buffer.

 The composition step of the shear-warp volume rendering
algorithm takes place in sheared object coordinate [12]. If
the k-component of the viewing vector in sheared object
coordinate is negative, a reverse-viewing order is implied,
requiring a back-to-front composition of slices [12]. In this
case, values are inserted into the zlist-buffer, such that a
decreasing order of z-values in respective zlist is
maintained. If, on the other hand, the k-component is
positive and hence requires a front-to-back composition of
slices, values are inserted into the zlist-buffer, such that an
increasing order of z-values in respective zlist is
maintained.

 The z-flag of a zlist decides if a new node can be added to
the zlist. Let us assume a normal front-to-back viewing.
The z-flag of each zlist in the zlist-buffer is first initialized
to the maximum possible floating value. During the
rasterization, a new node is added to the zlist only if the z
value of the prospective node is less than the z-flag. Each
time a new zlist node is appended or inserted into the zlist,
it traverses through the zlist from the head node onward,
accumulating opacity, until the accumulated opacity
reaches the maximum opacity threshold or until the end of
the list is reached. If the accumulated opacity has reached
maximum opacity threshold when exiting from the
traversal, nodes beyond the last node visited will be
destroyed. We also set the z-flag to the z value of the last
node visited. If the accumulated opacity do not reached the
threshold by the end of the zlist, we simply reset the z-flag
of the zlist to the maximum floating value again.

 A similar procedure occurs in the case of reverse-order
viewing. The differences are that in this case, we initialize
the z-flag of each zlist to the minimum possible negative
floating value, and we insert or append a new node into a
zlist only if the z-value of the node is greater than the z-
flag.

a)

b)

Hybrid Shear-Warp Rendering

23

In our implementation, we render the polygons before we
render the volume. One other way is to interleave the
rendering of polygons and volume slices. This has been
suggested by Lacroute [12]. The main advantage of this
approach is that rendering of polygons is done per slabs,
resulting in smaller memory requirement for the zlist-
buffer. The disadvantage of the approach is that polygons
will have to be clipped in 3D against each slab, hence
requiring more processing effort. In our approach, we save
a polygon point into a zlist only if the accumulated opacity
in the zlist is less than the user- or programmer-defined
threshold. Hence, generally, excessive memory usage due
to polygons can be checked.

Yet another way is to make the volume rendering itself
return zlists. The advantage of using zlists from polygons
is that the zlist structure requires no pre-sorting of the
polygon. The zlist itself sort each fragment falling upon a
pixel. No sorting need to be done for volume slices, on the
other hand, as they are already in order.

5.0 COMPOSITING VOLUME AND POLYGON
SAMPLES

The shear factor from the shear-warp factorization is
implemented by translating and resampling each volume
slice into the volume sheared object coordinate.
Resampling is needed as individual voxels in the translated
slice do not, in general, fit perfectly to individual pixels on
the intermediate image plane. Resampling can be
implemented using any appropriate interpolation filter.
From our experience, bilinear interpolation filter is optimal,
as far as speed and image quality is concerned (it is also the
interpolation scheme implemented in Lacroute’s VolPack
engine [21]).

In a “pure” shear-warp volume rendering algorithm, each
volume sample is immediately composited into the
corresponding pixel in the intermediate image using the
“over” operation. In a hybrid version of the algorithm
using the zlist-buffer, however, we must check if there is
any polygon fragment lying within the volume sample.
Suppose the slice index of the current volume slice being
processed is k. Let us assume that the viewing vector in
sheared object coordinate indicates a normal front-to-back
viewing. Then, the presence of any node in the
corresponding zlist with z-value, z, such that the integer
component of z is equal to k implies that the volume sample
does contain polygon fragment (or fragments if there is
more than one such node).

If there is no polygon fragment within the volume sample,
we proceed as usual. Otherwise, we have to “break up” the
voxel samples into smaller fragments depending on the
position of the polygon fragment or fragments. The volume
and polygon fragments are then composited in sorted order
using the “over” operation.

5.1 Opacity Correction

In an object-order volume rendering algorithm, the distance
between volume samples is constant in object space, but
varies in image space. As the sample spacing changes, so
must be the opacities [15].

In our hybrid rendering algorithm, not only must opacities
be corrected due to changes in sample spacing; the opacity
of each subblocks in a volume sample interspersed by
polygon fragment(s) must also be corrected or computed
from the corrected opacity of the original sample. The
reason is that that spacing used by each subblock is only a
fraction of the original spacing used by the original sample.

As is for opacity correction due to changes in sample
spacing, the formula that we have used for opacity
correction of subfragments of a volume sample is as
follows [12]:

 αnew = 1 – (1 - αold)

tn/to

 where

 αnew indicates new or corrected opacity,
 αold indicates previous or original opacity,
 tn indicates new thickness of volume sample,
 and to indicates previous or original thickness

 of the volume sample.

At this point, a note should be made regarding the way in
which we have treated the opacity for each subblock of a
volume sample. It is only an approximation (or perhaps,
more appropriately termed, a hack).

Let us assume that bilinear interpolation is being used to
resample each volume slice into the sheared object space.
For a sample point p in the current slice, let O1, O2, O3, O4

be the opacities of 4 surrounding voxels in the same slice.
Let C1, C2, C3, C4 be the respective colors, and W1, W2, W3,
W4 be the respectives weights of the contribution of the
voxels. Using bilinear interpolation, the color and opacity
of the point p would then be

 Color = W1*C1*O1 + W2*C2*O2 +

 W3*C3*O3 + W4*C4*O4, and
 Opacity = W1*O1 + W2*O2 + W3*O3 + W4*O4

If a polygon point exists within the resampled voxel, p, then
one needs to find the color and opacity of the fraction of the
resampled voxel lying before the polygon point. The
primary difficulty in designating a formulae for correcting
the color and opacity of a sub-fragment of the voxel lies in
that geometric polygons is continuous while voxels are
discrete. Ideally, for a particular sample point, p, one finds
the approximate location of the polygon point in the
surrounding 4 voxels. Let Corr(Oi) be the corrected value

Zakaria and Selvanathan

24

for opacity Oi. Then, the corrected color and opacity of the
voxel fragment lying before the polygon point is

 Color = W1*C1*Corr(O1) + W2*C2* Corr(O2) +

 W3*C3* Corr(O3) + W4*C4* Corr(O4) , and
 Opacity = W1* Corr(O1) + W2* Corr(O2) +

 W3* Corr(O3) + W4* Corr(O4)

A kludge that work more efficiently and produces
acceptable images, however, as testified by the illustrative
images in section 6, corrects the opacity of the voxel
fragment according to the opacity-correction formulae
given above, and rescale the color by mutiplying with the
new opacity.

6.0 IMPLEMENTATION AND RESULTS

 The zlist-buffering engine is implemented entirely in
software and in the C language, reusing codes where
applicable from the source code for the Volpack shear-warp
volume rendering library [21]. The engine is integrated
into a volume visualization system that is hoped will
eventually find widespread use as a medical educational
tool in the local schools. Considering the expected budgets
and available facility of target users, test runs were all
conducted on a Linux Pentium 133Mhz machine with 64
megabytes of main memory.

For illustration, since the prime concern has been hybrid
volume rendering, and not with any novel volume rendering
technique itself, one volume data is used, and it is rendered
with an assortment of polygonal objects. The 128 * 128 *
84 volume data, which originated from the Chapel Hill
Volume Rendering Test Dataset distributed by the
University of North Carolina, is that of a human head, with
the brain partially shown. Fig. 4 shows the rendering of a
simple test environment consisting of two mutually
perpendicular translucent polygons, and a polygonal sphere
embedded within the volume. A total of 258 polygons is
rendered together with the volume. The hybrid rendering
takes approximately 0.6 second.

Fig. 4: A CT head interspersed with 2 perpendicular
translucent polygons and a sphere

 Polygonal planes can be used for interactive specification
of cutting planes. As an example, a two-sided plane can be
used. Each side of the plane corresponds to either an
exterior or interior side, and can be colored differently.
Voxels lying to the exterior side of the plane can be clipped
out, while the rest of the volume maintained. Fig. 5
illustrates how such a visible cutting plane could be put into
action.

 Finally, Fig. 6 illustrates hybrid rendering with relatively
more complex geometries. The head is resized to 256 *
256 * 168 using Gaussian resampling filter, rotate it 60
degrees about the Y-axis, and -15 degrees about the Z-axis,
and rendered with a hat and a pair of sunglasses. A total of
496 polygons is rendered. Rendering takes approximately 2
seconds.

a)

b)

Fig. 5: a) A cutting plane placed across a CT head;
b) CT head cropped as specified by cutting plane

Fig. 6: “Pretty” hybrid rendering

Hybrid Shear-Warp Rendering

25

7.0 CONCLUSION

 This paper presented a hybrid-rendering technique based on
the shear-warp factorization. It outlined the approach for
parallel projection, and dealt with the problem of arbitrary
mixture of translucent and opaque polygons. The approach,
termed zlist-buffering, is introduced in the context of
volume rendering, and requires only a conceptually simple
extension to the well-known z-buffering. Polygons are
rendered prior to volume composition and warping,
facilitating a modular implementation of the hybrid-
rendering algorithm. Memory consumption is minimized
by maintaining that collective opacity in each zlist does not
exceed a maximal value. The algorithm has also been
shown to work well with runlength-encoding of the volume
and the intermediate image.

REFERENCES

[1] B. Cabral, N. Cam, J. Foran, Accelerated Volume
Rendering and Tomographic Reconstruction Using
Texture Mapping Hardware, ACM/IEEE Volume
Visualization Symposium Proceedings, ACM Press,
October 1994, pp. 91-97.

[2] L. Carpenter, The A-buffer; an Antialiased Hidden
Surface Method, Computer Graphics (SIGGRAPH
’84 Proceedings), Vol. 18, July 1984, pp 103-108.

[3] E. Catmull, A Subdivision Algorithm for Computer
Display of Curved Surfaces, PhD Thesis, Report
UTEC-CS-74-133, December 1974.

[4] D. Ebert, R. Yagel, J. Scott and Y. Kurzion, Volume
Rendering Methods for Computational Fluid
Dynamics Visualization, Proceedings Visualization
’94, October 1994, pp. 232-240.

[5] J. D. Foley, A. Van Dam, S. K. Feiner and J. F.
Hughes, Computer Graphics: Principles and
Practice, Addison-Wesley, 1990.

[6] D. S. Goodsell, S. Mian, and A. J. Olson, Rendering
of Volumetric Data in Molecular Systems, Journal
of Molecular Graphics, 7(1), March 1989, pp. 41-
47.

[7] S. J. Gortler, He, Li-Wei, M. F. Cohen, Rendering
Layered Depth Images, Technical Report MSR-TR-
97-09, Microsoft Research, March 1997.

[8] A. Kaufman, Efficient Algorithms for 3D Scan-
Conversion of Parametric Curves, Surfaces, and
Volumes, Computer Graphics, Vol. 21, No. 3, July
1987, pp. 171-179.

[9] A. Kaufman, An Algorithms for 3D Scan-
Conversion of Polygons, Proceedings Eurographics,
G. Marechal, Ed., North Holland, Amsterdam,
August 1987, pp. 197-208.

[10] A. Kaufman, R. Yagel, and D. Cohen, Intermixing
Surface and Volume Rendering, 3D Imaging, in,
Medicine: Algorithms, Systems, Applications, K. H.
Hoehne, H. Fuchs, S. M. Pizer, Eds., Springer-
Verlag, Berlin, 1990, pp. 217-227.

[11] P. Lacroute, M. Levoy, Fast Volume Rendering
Using a Shear-Warp Factorization of the Viewing
Transformation, Proc. SIGGRAPH ‘94 (Orlando,
Florida, July 24-29, 1994). Computer Graphics
Proceedings, Annual Conference Series, ACM
SIGGRAPH, 1994, pp. 451-458.

[12] P. Lacroute, Fast Volume Rendering Using a Shear-
Warp Factorization of the Viewing Transformation,
Ph.D. Thesis, Stanford University, 1994.

[13] D. Laur and P. Hanrahan, Hierarchical Splatting: A
Progressive Refinement Algorithm for Volume
Rendering, Computer Graphics 25(4), July 1991, pp.
285-288.

[14] M. Levoy, Display of Surfaces from Volume Data,
IEEE Computer Graphics and Applications 8 (3),
May 1988, pp. 29-37.

[15] M. Levoy, A Hybrid Ray Tracer for Rendering
Polygons and Volume Data, IEEE Computer
Graphics and Applications 10(3), March 1990, pp.
33-40.

[16] W. Lorensen, and H. Cline, Marching Cubes: A
High Resolution 3D Surface Construction
Algorithm. Proceedings of SIGGRAPH ’87, in
Computer Graphics 21(4), July 1987, pp. 163-169.

[17] W. Lorensen, H. Cline, S. Ludke, C. R. Crawford
and B. C. Teeter, Two Algorithms for 3-dimensional
Reconstruction of Tomograms, Medical Physics,
15(3), May/June 1988, pp. 320-327.

[18] O’Rourke, J., Computational Geometry in C,
Cambridge Press, 1998.

[19] L. Sobierajski, and A. Kaufman, Volumetric Ray
Tracing, ACM/IEEE Volume Visualization
Symposium Proceedings, ACM Press, October 1994,
pp. 11-18.

[20] J. Wilhelms, and A. V. Gelder, A Coherent
Projection Approach for Direct Volume Rendering,
Computer Graphics 25, pp. 275-284, July 1991.

Zakaria and Selvanathan

26

[21] The VolPack Volume Rendering Library,
http://www-graphics.stanford.edu/software/volpack/.

[22] Programming with OpenGL: Advanced Rendering,
http://www.sgi.com/Technology/OpenGL/advanced9
7/notes/.

BIOGRAPHY

M Nordin Zakaria is a lecturer at the Department of
Multimedia, Universiti Putra Malaysia, where he teaches
and supervises Computer Graphics courses and projects.
Current research interests include 3D Computer Animation
and Computer Games.

N. Selvanathan is a lecturer at the Faculty of Computer
Science and Information Technology, Universiti Malaya.
Current research interest is medical image processing.

