
Malaysian Journal of Computer Science, Vol. 10 No. 1, June 1997, pp. 47-52

47

AN EFFECT OF SIMPLIFYING MAGIC RULES FOR ANSWERING RECURSIVE QUERIES IN
DEDUCTIVE DATABASES

Ali Mamat
Department of Computer Science

Universiti Putra Malaysia
43400 UPM Serdang

Malaysia
Tel.: 03-9486101x3695

email: ali@fsas.upm.edu.my

Mustafa Mat Deris
School of Information Technology
Kolej Agama Sultan Zainal Abidin

21000 Kuala Terengganu
Malaysia

Tel.: 09-6664466
email: mustafa@rs520.kusza.edu.my

ABSTRACT

The basic magic sets transformation algorithm for
rewriting logical rules in deductive databases is very clear
and straightforward. However, rules generated by the
algorithm for answering queries are too many compared to
the original rules. Therefore, it is useful to simplify the
generated rules before they are evaluated. This paper
reports the study on the effect of simplifying such rules from
the aspect of computing time. It is concluded that the
improvement as a result of simplification is quite
significant.

Keywords: deductive databases, magic sets method,
rule/goal graph, magic rules

1.0 INTRODUCTION

A deductive database consists of a set of rules and facts. A
rule is of the form A ← B1,…, Bm where A, B1, ..., Bm are
atomic formulas (atoms). A is called the head of the rule and
B1, ..., Bm is the body of the rule. Each Bi, i=1, ... ,m is also
called a subgoal. An atomic formula is of the form p(t1, ... ,
tn) where p is a predicate symbol and t1, ... , tn are terms.
Predicates represent database relations and they are
classified into two types, namely, extensional database
(EDB) predicates and intensional database (IDB) predicates.
IDB predicates appear in the head of rules as well as in the
body whereas EDB predicates appear only in the body of
rules. Thus, EDB predicates correspond to database facts
(tuples in relational databases). A rule is called recursive if
the same predicate symbol appears both in the head and
body of the rule.

In general, methods of answering queries in deductive
databases may be classified into two classes, namely, top-
down and bottom-up methods. Bottom-up methods are
claimed to have advantages over top-down methods. In
particular, the former return all answers to a query and do
not go into an infinite loop. In other words, the
computation terminates immediately after all answers to the

query are returned. One of the bottom-up methods is magic
sets [1]. In this method, the original rules relevant to a
given query are transformed to a set of rules called magic
rules. The transformation is guided by binding (a constant
in the query) propagation behaviour during the top-down
phase. The resulting magic rules are then evaluated so as to
return answers to the query.

There are various forms of magic sets transformation
algorithms and the most basic one can be found in [2]. In
this transformation, two new types of predicates are
introduced, namely supplementary predicate supi.j (i and j
are integers) and magic predicate m.p where p is a predicate.
These two predicates model the constant (binding)
propagation strategy of top-down methods. In fact, the two
predicates will produce a set of values which are used to
restrict the computation so that only relevant tuples are
generated. For each rule ri, having k subgoals, we create a
single rule for supi.j where j=0,1,2,...,k-1 and i is an integer
representing the rule number.

As a working example, consider the same generation rules of
Fig. 1 below:

r1: sg(X,X) ← person(X)
r2: sg(X,Y) ← par(X,XP),sg(XP,YP),

 par(Y,YP)

Fig. 1: Rules for the same generation

The first rule says that every person is of the same
generation as her/himself and the second rule says that two
individuals are of the same generation if their parents are.
Suppose we give the query ← sg(c,X) which asks for all the
individuals of the same generation as c. The magic rules
resulting from the above rules using the basic magic set
transformation algorithm of Ullman [2] are shown in Fig. 2.

Group I

(1) m.sg(XP) ← sup2.1(X,XP).

Mamat and Deris

48

Group II

(2) sup1.0(X) ← m.sg(X).
(3) sup2.0(X) ← m.sg(X).

Group III

(4) sup2.1(X,XP) ← sup2.0(X), par(X,XP).
(5) sup2.2(X,YP) ← sup2.1(X,XP),sg(XP, YP).

Group IV

(6) sg(X,X) ← sup1.0(X), person(X).
(7) sg(X,Y) ← sup2.2(X,YP), par(Y,YP).

Group V

(8) m.sg(c).

Fig. 2: Magic rules for the same generation

Group I consists of rules for magic predicates, Group II for
zeroth supplementary predicates, Group III for other
supplementary predicates, Group IV for IDB predicates, and
finally, Group V consists of only one rule called the
initialisation rule. The above way of grouping rules will
make the subsequent discussion easy.

The basic magic sets transformation is very clear and
straightforward. However, rules generated by this
transformation algorithm are too many compared to the
original rules as seen in the previous example. This
suggests the generated rules could be simplified before they
are evaluated in order to get a better performance in terms of
computing time. According to Ullman, the simplification
does not affect the computing time significantly, but makes
the rules clearer [3]. We will show that this statement is not
quite correct.

The remainder of the paper is organised as follows. Section
2 shows how the simplified magic rules are directly
generated from a rule/goal graph. Section 3 gives the
sample data used in the computation. Section 4 presents
the CPU time (in seconds) for answering queries and finally,
Section 5 concludes the paper.

2.0 GENERATION OF SIMPLIFIED RULES USING A
RULE/GOAL GRAPH

Before going any further, we need to introduce the concept
of binding pattern . A binding pattern for n-ary predicate p
is a string s of length n of b's and f's, where b stands for
bound and f stands for free. The binding pattern indicates
which arguments of p are bound and which are free. If the

ith symbol of the pattern is b (respectively f), then the ith
argument of p is bound (respectively free). For a predicate p
with a binding pattern s, we write ps to denote the binding
pattern for p. Binding patterns for predicates in a set of
rules are determined by the propagation of bindings
(constants) in a given query during a top down phase.

The binding patterns of predicates in a set of rules and a
query can be represented by a rule/goal graph [4]. The
rule/goal graph has two types of nodes, namely rule nodes
and goal nodes. Goal nodes represent adorned predicates
(predicates with binding patterns) in the rules and the
query, and rule nodes represent rule adornments (rule with
bound and free variables). The rest of the details regarding
the rule/goal graph are omitted and we refer interested
readers to [2, 4]. The rule/graph for the same generation
rules of Fig. 2 and the query ← sg(c,X) is shown in Fig. 3.

In [5], it was shown how magic rules were generated by
using a rule/goal graph. Basically, a rule/goal graph is
traversed in a depth-first search manner and for each node
visited, a particular magic rule associated to that node is
generated. Nodes of the rule/goal graph are associated to
magic rules in the following way:

(a) the root node is associated with the initialisation rule
(Group V rules),

(b) goal nodes with IDB predicates are associated with
rules for magic predicates (Group I rules),

(c) rule nodes of the form ri.0 are associated with rules for
zeroth supplementary predicates (Group II rules),

(d) rule nodes of the form ri.j, j <> 0 are associated with
rules for other supplementary predicates (Group III
rules), and

(e) rule nodes with only one successor (goal-node child)
are associated with rules for IDB predicates (Group IV
rules).

This way of generating magic rules can generate simplified
magic rules directly if we give an extra effort whenever a rule
node ri.j, j is an integer including 0, is accessed. This node
corresponds to a rule for a supplementary predicate. Here,
we must determine whether or not the rule corresponding to
such node should be in the final set of simplified rules.
Ironically, there is a simple way to determine that. We only
need to examine its left child (goal) node. If this goal node
contains IDB predicate, then the supplementary rule must
be in the final set of rules, otherwise it is not. Although a
supplementary rule is not in the final set, such a rule will
temporarily be generated and it will be used in substituting a
predicate in the body of other magic rules. It is useful to
mention here that the rule/goal graph, used to help
generating magic rules and at the same time simplifying it, is
constructed only once.

An Effect of Simplifying Magic Rules For Answering Recursive Queries in Deductive Databases

49

sg
bf

r
[X|]
1.0

[X|Y,XP,YP]
r

2.0

[X,XP|Y,YP]

[X,XP,YP|Y]
r

2.2

r
2.1

person
par

bf

sg
bf

par
fb

b

Fig. 3: Rule/goal graph for the same-generation rules

Let us now traverse the rule/goal graph of Fig. 3 in a depth-
first search manner and as we traverse, we generate magic
rules accordingly.

(a) The root node sgbf

For this node, a rule for magic predicate m.sg is created. The
argument of the predicate is the bound argument of the
query. We thus have an initialisation rule

m.sg(c). (f1)

(b) Rule node r1.0

A rule for zeroth supplementary predicate sup1.0 is created.
The argument of the predicate is the bound variable of the
current node, namely X. The body of the rule consists of
m.sg predicate, where predicate sg is predicate in the head of
rule r1 and the bound argument of the head becomes the
argument of predicate m.sg. The resulting rule is

sup1.0(X) ← m.sg(X). (t1)

The above rule is not in the final set because the left child
node of r1.0 contains an EDB predicate. The next node to
visit is the goal node personb. Since the node contains an
EDB predicate, there is no rule created for the node. The
search then goes back to node r1.0 and from there the
search continues to the right child node. It happens that no
such node exists, so we create one of the rules for IDB
predicate sg:

sg(X,X) ← sup1.0(X), person(X).

Replacing predicate sup1.0 by the body of rule (t1) above
gives the rule

sg(X,X) ← m.sg(X), person(X). (f2)

(c) Rule node r2.0

We next traverse the right branch of the root where we
reach the rule node r2.0. As with the node r1.0, a zeroth
supplementary rule is created, namely:

sup2.0(X) ← m.sg(X). (t2)

This rule is also not in the final set. The next node to visit is
the goal node par bf but there is no rule associated to this
node as it contains EDB predicate. A search then continues
to the right child of node r2.0, where node r2.1 is reached.

(d) Rule node r2.1

Initially, the supplementary rule generated for the current
node is

sup2.1(X,XP) ← sup2.0(X), par(X,XP).

Notice that the left child node of the node in hand, i.e. node
sgbf, contains IDB predicate, hence the supplementary rule
generated must be included in the final set of rules.

Mamat and Deris

50

As with predicate sup1.0 , predicate sup2.0 is substituted by
the body of rule (t2) and the result is

sup2.1(X,XP) ← m.sg(X), par(X,XP). (f3)

(e) Goal node sg bf

We next consider the left child of node r2.1, namely IDB
goal node sg bf for which a magic predicate rule is
generated:

m.sg(XP) ← sup2.1(X,XP). (f4)

Notice that here we do not need to replace the predicate
sup2.1 in the body of the rule because the rule for the
predicate sup2.1 itself was already included in the final set
of rules.

(f) Rule node r2.2

Like its parent node, we create for this node a rule defining a
nonzeroth supplementary predicate. Variables of the
predicate are X and YP. The resulting rule is

sup2.2(X,YP) ← sup2.1(X,XP), sg(XP,YP). (t4)

Finally, we also create a rule defining IDB predicate sg that
appears in the head of rule r2. The rule is

sg(X,Y) ← sup2.2(X,YP), par(Y,YP).

Replacing predicate sup2.2 in the above rule by the body of
rule (t4) results in the rule

sg(X,Y) ← sup2.1(X,XP),
sg(XP,YP), par(Y,YP). (f5)

As a summary, the resulting simplified rules are rules f1 to f5
as shown in Fig. 4, which are the same as those produced
by the simplification algorithm of Ullman found in [2].

m.sg(c)
m.sg(XP) ← sup2.1(X,XP)
sup2.1(X,XP) ← m.sg(X), par(X,XP)
sg(X,X) ← m.sg(X), person(X)
sg(X,Y) ← sup2.1(X,XP),sg(XP,YP), par(Y,YP)

Fig. 4: The simplified magic rules for the same generation

3.0 SAMPLE DATA

Having simplified the magic rules, we need to investigate
how much the simplification affects the computing time. In
this respect, we will evaluate the sets of magic rules of Fig. 2
and Fig. 4 together with different sets of database facts by
using the semi-naive evaluation method [6]. The data for

person and par (parent) EDB predicates are based on the
perfect binary tree shown in Fig. 5. The reason for choosing
such structure is just to simplify data creation. The tree
represents the family relationship where each node
represents an individual and each branch represents a
parenthood relationship. For instance, the root node a11
and its child node a21 form the fact (tuple) parent(a21,a11).
This fact means the parent of a21 is a11. The number of
facts for person and par up to nth level of the tree are given
by (2n - 1) and (2n - 2) respectively. Table 1 shows the
number of facts of these two predicates for different levels
of the tree.

Each row of Table 1 represents one set of database facts.
For instance, when n=3 we have the following set:

person(a11).
person(a21).
person(a22).
person(a31).
person(a32).
person(a33).
person(a34).

par(a21,a11).
par(a22,a11).
par(a31,a21).
par(a32,a21).
par(a33,a22).
par(a34,a22).

The query given to each database (database facts plus
magic rules) is of the form ← sg(an1,X), where n is the
lowest level of the tree. In other words, an1 is an individual
represented by the left most node of the lowest level of the
tree. To answer such a query, all person and par facts are
involved in the computation.

4.0 RESULTS

The Central Processing Unit (CPU) time required to answer
the query in the form of ←sg(an,1,X), where n is the lowest
level of the tree, against each database is recorded. Two
readings have been taken as illustrated in Tables 2 and 3.
Each table represents one reading. From the tables, it is
clear that the readings are quite consistent in the sense that
the improvement, as a result of the simplification, of the two
readings is very close to each other. It can also be seen that
the improvement decreases as the number of database facts
(represented by the level of the tree) increases. As a matter
of fact, most database processing usually deals with large
volumes of data with thousands of tuples (facts). Even in
such a situation, the

An Effect of Simplifying Magic Rules For Answering Recursive Queries in Deductive Databases

51

tables show that the effect of simplification still produces
more than 10 percent improvement.

5.0 CONCLUSION

We have shown that the simplified magic rules can be
generated directly by using a rule/goal graph. The

approach used here is very clear, straightforward and the
simplified rules are generated in one phase. It gives us the
alternative way of simplifying magic rules for rule-based
query evaluation. We have also shown that the resulting
magic rules give better performance in terms of computing
time - an observation that should not be neglected.

a11

a21 a22

level 1

level 2

level 3
a31 a32 a33 a34

Fig. 5: A binary tree for representing a family relationship

Table 1: The number of facts for different levels of the tree

Level of tree No. of facts for person No. of facts for parent Total of facts

3 7 6 13

5 31 30 61

7 127 126 253

9 511 510 1021

11 2047 2046 4093

Table 2: First CPU time reading

Level of tree Before the simplification
(Seconds)

After the simplification
(Seconds)

Improvement (%)

3 0.073 0.056 23.28

5 0.336 0.259 22.91

7 1.835 1.548 15.64

9 12.700 10.715 15.62

11 110.158 98.791 10.32

Mamat and Deris

52

Table 3: Second CPU time reading

Level of tree Before the simplification
(Seconds)

After the simplification
(Seconds)

Improvement (%)

3 0.069 0.054 21.73

5 0.339 0.258 23.89

7 1.834 1.554 15.26

9 12.383 10.269 17.07

11 114.077 98.749 13.43

REFERENCES

[1] F. Bancilhon et al., "Magic sets and other strange
ways to implement logic programs", in Proceedings
of the Fifth ACM Symposium on Principles of
Database Systems, New York, ACM, 1986, pp. 1-15.

[2] J. D. Ullman, Principles of Database and
Knowledge-Base Systems, Vol. II. Computer Science
Press, 1989.

[3] J. D. Ullman, "Bottom-up beats top-down for
datalog", in Proceedings of the Eight ACM
Symposium on Principles of Database Systems, New
York, ACM, 1989, pp. 140-149.

[4] J. D. Ullman, "Implementation of logical query
languages for databases", ACM Transactions on
Database Systems, Vol. 10, No. 3, 1985, pp. 289-321.

[5] A. Mamat, "A technique for transforming rules in
deductive databases", Pertanika Journal of Science
and Technology, Vol. 2, No. 2, 1994, pp. 121-136.

[6] F. Bancilhon, "Naive evaluation of recursively
defined relation", in M L. Brodie and J. Mylopoulos,

(eds) On Knowledge Base Management Systems,
Springer Verlag, New York, 1986, pp. 368-378.

BIOGRAPHY

Ali Mamat is currently a lecturer in computer science at
Universiti Putra Malaysia, Serdang. He obtained his Ph.D
degree in Computer Science from the University of Bradford,
U.K. in 1992. His research interests include databases and
logic programming.

Mustafa Mat Deris is a lecturer in computer science at Kolej
Agama Sultan Zainal Abidin, Kuala Terengganu. He
obtained his M.Sc degree in Computer Science from the
University of Bradford, U.K. in 1989. His research interests
include computer performance and databases.

ACKNOWLEDGMENT

We would like to thank the referees for giving us good
suggestions.

