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ABSTRACT 
 
Currently, many state-of-the-art background subtraction techniques cannot deal properly with the area of periodic 
changing background, while some continue classifying them as foreground at intervals, others simply mask that 
area as a non-region of interest. To cope with this issue, a novel method of detecting repetitive temporal patterns 
based on the image sequences was proposed in this paper. The main emphasis of the proposed approach is on 
classifying those pixels as a background and identifying foreground objects in their relevant areas. As for the 
foreground detection, a model of time series pattern found in each pixel is individually built first; and then, any 
changes beyond the allowance of model periodicity are then determined as foreground objects. The proposed 
method could be used and run in parallel with any state-of-the-art background subtraction technique, allowing more 
accurate foreground-background segmentation. Experimental results showed that using Y channel, the proposed 
method of detecting time-series background area could achieve 92.9% of recall rate with less than 1% false 
positives. The recall of foreground detection in an area of repetitive time-series pattern was about 87%; while F-
measure was about 0.73 on average. The false positives of foreground detection were also less than 1%. 
Accordingly, the proposed time-delay detection technique could significantly help to suppress the foreground error 
on time series background area, especially during the change from one sub-pattern to another which causes a 
camera sensor to capture both sub-pattern values in one frame. Performance comparison with state-of-the-art 
methods showed that our proposed method was able to reduce 80% of the average false alarm and improve F-
measure to 28% while the computational efficiency was reduced by only 1%. 
 
Keywords: subtraction techniques, change detection algorithms, periodic structures, pattern matching, time 
series analysis.  
 
1.0 INTRODUCTION 
 
In the recent past, most video surveillance works needed manual monitoring by humans. Humans were needed to 
observe, analyse and decide on the observed event. However, humans may not be fully capable of handling all of the 
situations fast or well enough. Today, rapid and valid responses to some situations are of the highest priority; 
therefore, computer vision has been developed to augment human's efficiency, especially on works related to 
monitoring and security. The main objective of computer vision is to synthesize important data for further use by 
another process. For example, in the past, crime prevention work with the closed-circuit camera was done manually 
by human observers monitoring suspicious behaviour of the certain individual through a closed-circuit camera 
system. Nowadays, computer vision can filter all of the recorded video data down to only images of an individual 
with abnormal behaviour. In order to be able to do this, primarily computer vision has to be able to discriminate the 
differences between visual objects. 
  
A video surveillance system sometimes encounters a problem of misclassification in foreground-background 
segmentation. It is more severe particularly in an urban area where a repetitive time-series pattern is visible in the 
scene; this periodic changing background is misclassified as a foreground object. A digital billboard is shown in Fig. 
1 is one example of a time-series background. 
  
Many methods have been proposed (e.g. [1, 2, 3, 4, 5]). Some of them (e.g. [6, 1, 2]) addresses a problem of 
dynamic backgrounds such as swaying trees, small waves on the surface of lakes, a water fountain—to the best of 
our knowledge, none has considered the issue of repetitive time-series pattern. We propose the method which 
identifies an area of time series pattern. The method of foreground segmentation in that area is also proposed in this 
paper. Our proposed methods will be detailed after some related works on background subtraction and time-series 
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detection are described in the next section. Experimental results and the performance comparison of the proposed 
method with state-of-the-art methods will be shown and discussed next. The conclusion is drawn at the end. 
 

 
 

Fig. 1. An example of repetitive temporal pattern (digital advertising board) in daily life. (Metropolitan 
Transportation Authority of the State of New York, https://www.mta.info) 

 
 
2.0 RELATED WORKS 
 
Many background subtraction techniques that address a dynamic background problem have been proposed— details 
of those methods can be found in a review paper such as [7] and [8]. In [7], more than 300 papers were studied and 
categorized into two groups; one uses a traditional background model, the other uses a more recent background 
model. The key to success in foreground detection based on these background subtraction techniques is the model 
itself. Many researchers, therefore, dedicate their time and effort to robust background modelling. 
 
One approach is to use a statistical model based on Gaussian distribution (e.g. [9] and [10]) to handle the 
background dynamics. However, a rapid change in the background makes this type of model far from ideal. A 
combination of Dirichlet mixture model and probabilistic regularization is therefore used (in [11]) so that dynamic 
backgrounds can be accurately modelled and continuously updated. A non-parametric approach has also been 
proposed to solve the problem of dynamic background. One of them, the background model based on local binary 
pattern (e.g. [6]), uses the texture around the pixel for background modelling. Its deficiencies are the detection 
problem in the foreground object with uniform intensity and the sensitivity to noise. Another non-parametric method 
is ViBe (visual background extractor) [1]. The random selection of previously observed pixel values for background 
modelling and the spatial propagation to its neighbour pixels make it more robust to dynamic backgrounds; shadows 
and frequent changes in the background are however unsolved. PBAS (pixel-based adaptive segmenter) [2] is also 
non-parametric. The background dynamics are continuously estimated for each pixel— gradual changes in the 
background are, consequently, properly handled. 
 
Features and colours are other properties used in background model— [12] and [13] are examples based on local 
binary similarity pattern (LBSP). The use of color-LBSP representation in SuBSENSE (of [13]) helps detect subtle 
changes related to foreground objects and keep the irrelevant motion as the background. Some methods create more 
than one background model, e.g. a dual model in [5] and a multi-model in [3] and [4]. The former has two models; a 
self-model for the background of its pixel location, a neighbourhood-model for neighbour pixels around itself. The 
latter consists of long-term and short-term models; it uses a multi-resolution approach to remove noises. These 
multi-model methods employ many models for capturing background dynamics in the scene. The technique 
mentioned above is similar to that reported in [14]. That research work has developed a background subtraction 
technique that uses a set of multiple background images to construct a background model for detecting foreground 
objects in a dynamic background image. The developed technique uses data at the level of image space to resolve 
the issue of camera jitter which is often found in a video clip shot with a portable camera. Moreover, this work has 
also developed a method for reducing image noise based on colour space. The efficiency of this method is enhanced 
by using a hash-table lookup instead of a comparison of threshold values. Another similar technique is that reported 
in [15] which uses multiple BG models and megapixels to construct a background model. It improves the 
discrimination accuracy in identifying the foreground object from background image based on colour space. 
Namely, under a low light condition, identification is done on RGB and Y channels whereas it is done on Cr and Cr 
colour channels under a high brightness condition. Another study [16] proposes the use of difference discriminator 
for constructing the background model and Gaussian distribution for updating the threshold value for subtracting 
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foreground pixel from the background image. That study also proposes three heuristics for increasing the efficiency 
of model adaptability. To classify the area of repetitive temporal patterns as backgrounds, the recurrence of time 
series must be detected. Many methods have been proposed for temporal pattern retrieval (e.g. [17] and [18]), but 
none is applied to the detection of repeated temporal pattern in image sequences—the image region of those time 
series pattern is often misclassified as the foreground. Some methods of finding periodic movement patterns in 
spatio-temporal data, as surveyed in [19], are similar to our approach. However, they mainly focus on a trajectory of 
the object which is successively used for analysing behaviours of moving objects. The periodic pattern on electronic 
billboards, the main challenge of our proposed method, has no spatial movement; the pixel just changes its value 
from one to another and continues in a cyclic manner. 
 
 

 
 

Fig. 2. An overview diagram of the proposed algorithm. 
 
 
3.0 CHANGE DETECTION ON REPETITIVE TIME SERIES 
 
Most previous works on background subtraction technique, although deal with some degrees of random changes in 
the scene, do not address the problem of repetitive time series appearing in some regions of image sequences. Such 
regions are, therefore, detected as foreground objects every time the next value of time series is observed, and 
remain as foregrounds for a while; they are then absorbed into the background model during the process of model 
updating, making them part of the background—this cycle is repeated every time the content displayed in those 
image areas changes from current value to the next value of the time series. This phenomenon makes the detection 
of the foreground on such image area infeasible. We proposed the method which is capable of detecting the repeated 
temporal pattern in image sequences and building the model—on a per-pixel basis—for such background region; the 
model is then used to find a foreground object which does not follow the pattern of periodic change, allowing the 
foreground detection in those image regions. An overview diagram of the proposed algorithm is shown in Fig. 2. 
Note that the proposed method can run individually on each pixel, and therefore it allows the implementation of per-
pixel processing in separate threaded processes. 
 
 
3.1 Notation 
 
This section provides the notational conventions used throughout this paper. The value of pixel observed at location 
(𝑖𝑖, 𝑗𝑗) at time 𝑡𝑡 is expressed by 𝑣𝑣𝑖𝑖,𝑗𝑗(𝑡𝑡) or 𝑣𝑣 for short. The number of consecutive frames (denoted by 𝑝𝑝ℎ ) in which 
the same value (or approximately the same value) is displayed at location (𝑖𝑖, 𝑗𝑗) will be kept in the vector 𝐏𝐏 =
[𝑝𝑝𝑣𝑣 𝑝𝑝ℎ]—we call this vector as ‘sub-pattern’ where 𝑝𝑝𝑣𝑣 is an accumulated pixel value of the sub-pattern. Note that 𝐏𝐏𝑘𝑘 
denotes the 𝑘𝑘𝑡𝑡ℎ sub-pattern. If a series of sub-patterns [𝐏𝐏0 𝐏𝐏1. . .𝐏𝐏𝑛𝑛−1] is observed repetitively and successively at the 
same location (𝑖𝑖, 𝑗𝑗), it establishes a ‘repetitive time-series pattern’ or ‘TS pattern’ for short. The TS pattern is 
represented by vector 𝐒𝐒 = [𝐏𝐏0 𝐏𝐏1. . .𝐏𝐏𝑛𝑛−1]. The region of an image in which the TS pattern is observed is called ‘TS 
region’—we propose the method of building the background model for each pixel in TS region; this model is called 
‘TS model’ for short. Table 1 summarizes most of the notational conventions used throughout this paper. 
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Table 1. Notations used in this paper. They are per pixel, unless stated otherwise. 

 
Symbol Explanation 
𝑣𝑣𝑖𝑖,𝑗𝑗(𝑡𝑡) or 𝑣𝑣 Current value of pixel (𝑖𝑖, 𝑗𝑗) observed at time (𝑡𝑡) 

𝐏𝐏𝑘𝑘 = [𝑝𝑝𝑘𝑘𝑣𝑣  𝑝𝑝𝑘𝑘ℎ] 𝑘𝑘𝑡𝑡ℎ sub-pattern vector 
𝑝𝑝𝑘𝑘𝑣𝑣 Accumulated pixel value of 𝑘𝑘𝑡𝑡ℎ sub-pattern 
𝑝𝑝𝑘𝑘ℎ The number of successive frames by which 𝑝𝑝𝑘𝑘𝑣𝑣 is accumulated 
𝐒𝐒 = [𝐏𝐏0 𝐏𝐏1. . .𝐏𝐏𝑛𝑛−1] Repetitive time series pattern (one cycle) with n sub-patterns 
𝐏𝐏𝑘𝑘′ = [𝑝𝑝𝑘𝑘𝑣𝑣′ 𝑝𝑝𝑘𝑘ℎ′] 𝑘𝑘𝑡𝑡ℎ candidate sub-pattern vector 
𝑝𝑝𝑘𝑘𝑣𝑣′ Accumulated pixel value of 𝑘𝑘𝑡𝑡ℎ candidate sub-pattern 
𝑝𝑝𝑘𝑘ℎ′ The number of successive frames by which 𝑝𝑝𝑘𝑘𝑣𝑣′ is accumulated 
𝐒𝐒′ = [𝐏𝐏0′  𝐏𝐏1′ . . .𝐏𝐏𝑐𝑐−1′ ] List of c candidate sub-patterns (if TS pattern exists, it will be detected when c = 2n+1) 
𝜀𝜀𝑣𝑣 Tolerance for pixel value similarity 
𝜀𝜀ℎ Minimum length of candidate sub-pattern that will not be merged (or ignored) 
𝜀𝜀𝑐𝑐 Allowance for length difference of two candidate sub-patterns being compared 
 
 
3.2 Preprocessing 
 
In order to take into account, the pixel values of neighbourhoods, we apply the averaging filter of size 3 × 3 to all 
image frames before starting the detection of repetitive time series pattern in each pixel. This preprocessing helps 
improve the performance of time-series detection, as will be shown in experimental results. 
 
 
3.3 Detecting a Repetitive Time Series Pattern 
 
We proposed a method of detecting the repetitive time series pattern in each image pixel so that those pixels could 
be classified as a background—as a result, foreground detection becomes feasible in the area of those pixels. The 
detection of TS pattern is the first part shown on the left of Fig. 2. Algorithm 1 and Fig. 3 summarize the detection 
process which is run concurrently on each pixel; details of the method are as follows. 
 
 
3.3.1 Building a list of candidate sub-patterns 
 
As to each pixel location in image sequences, e.g. at the pixel location (𝑖𝑖, 𝑗𝑗), the historical values 𝑣𝑣 of a pixel will be 
examined; a new candidate sub-pattern vector 𝐏𝐏′ = ([𝑝𝑝𝑣𝑣′ 𝑝𝑝ℎ′]) is successively built for each new value of 𝑣𝑣 which 
significantly differs from previous value (or the current sub-pattern vector is updated if 𝑣𝑣 is approximately equal to 
the previous value)—𝑝𝑝ℎ′ is the number of consecutive frames in which the same (or approximately the same) pixel 
value is observed, and 𝑝𝑝𝑣𝑣′ is the accumulated value of those pixel values in 𝑝𝑝ℎ′ frames. As a result, the list of these 
candidates is constructed and incrementally expanded; it is denoted by 𝐒𝐒′ = [𝐏𝐏0′  𝐏𝐏1′ . . .𝐏𝐏𝑐𝑐−1′ ]. Lines 5–10 of  
Algorithm 1 are the code snippets which gradually build up the list of candidate sub-patterns. More details of them 
are as follows. 
 
When the next value 𝑣𝑣 of pixel at location (𝑖𝑖, 𝑗𝑗) is obtained (line 4), its value is compared to the last candidate sub-
pattern 𝐏𝐏𝑐𝑐−1′ , i.e. 
 

 
here, 𝑝𝑝𝑐𝑐−1𝑣𝑣′  / 𝑝𝑝𝑐𝑐−1ℎ′  is the averaged pixel value of the last sub-pattern (line 5). If the difference is less than a predefined 
similarity threshold 𝜀𝜀𝑣𝑣, the last candidate sub-pattern is updated—its accumulated value 𝑝𝑝𝑐𝑐−1𝑣𝑣′  is added by 𝑣𝑣 and the 
number of frames 𝑝𝑝𝑐𝑐−1ℎ′  is incremented by 1 (line 6), 
 

 �𝑣𝑣 − 𝑝𝑝𝑐𝑐−1
𝑣𝑣′

𝑝𝑝𝑐𝑐−1
ℎ′ � < 𝜀𝜀𝑣𝑣 , (1) 
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Fig. 3. Detection of repetitive time series pattern. 
 
 

 
In case that the incoming 𝑣𝑣 value differs greatly from previous candidate sub-pattern, i.e.(1) is false, it is assumed 
that a new sub-pattern starts to display itself---new candidate sub-pattern 𝐏𝐏′ = [𝑝𝑝𝑣𝑣′ 𝑝𝑝ℎ′] (where 𝑝𝑝𝑣𝑣′ = 𝑣𝑣 and 𝑝𝑝ℎ′ =
1) is constructed and added at the end of candidate list 𝐒𝐒′ (line 8). As a result, this new sub-pattern becomes the last 
candidate sub-pattern in the list; and the number of sub-patterns in the list (denoted by 𝑐𝑐) is incremented by 1. 
 
 
3.3.2 Merging short candidate sub-patterns 
 
Some candidate sub-patterns may have a very small value of consecutive hit count 𝑝𝑝ℎ′ —it happens when the period 
of those sub-patterns is actually short or there is a short sudden change of pixel value because of illumination shift 
and/or instability associated to image sensors, etc. These short candidates are not desirable because they will cause 
an error in detection of TS pattern. Here, they are merged into either left or right candidate sub-pattern depending on 
which one has more similar pixel value (line 9). 
 
For instance, if the candidate sub-pattern 𝐏𝐏𝑞𝑞′  appears for a very short period—i.e. 𝑝𝑝𝑞𝑞ℎ

′  < 𝜀𝜀ℎ where 𝜀𝜀ℎ is the minimum 
length of candidate sub-pattern that will not be merged—it will be merged into the adjacent candidate sub-pattern of 
which averaged pixel value is more similar to its pixel value, 
 

 𝐏𝐏𝑞𝑞′  +=  �
𝐏𝐏𝑞𝑞−1′ , if 𝑑𝑑𝑞𝑞−1′ ≤ 𝑑𝑑𝑞𝑞+1′

𝐏𝐏𝑞𝑞+1′ , otherwise ,  (3) 

 
where 
 

 𝑑𝑑𝑎𝑎′ = ��
𝑝𝑝𝑎𝑎𝑣𝑣

′

𝑝𝑝𝑎𝑎ℎ
′� − �

𝑝𝑝𝑞𝑞𝑣𝑣
′

𝑝𝑝𝑞𝑞ℎ
′��. (4) 

 
 

 �𝑝𝑝𝑐𝑐−1𝑣𝑣′ �+= 𝑣𝑣 and + +�𝑝𝑝𝑐𝑐−1ℎ′ �. (2) 
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3.3.3 Finding a periodic repetition 
 
While the list of candidate sub-patterns 𝐒𝐒′ is being built and successively grown, it is continually examined in order 
to find if a series of sub-patterns is periodically repeated (i.e. whether or not the repetitive temporal pattern 
occurs)—this is performed concurrently for each pixel location. We implement the process of verifying a periodic 
repetition of candidate sub-patterns in the same manner as searching for two identical sub-strings in the searched 
string. Our verification method is, however, different in many aspects, as follows. 
 
The verification of repetitive TS pattern is an incremental process which attempts to continually check each 
incoming pixel value in order to find if there is a series of candidate sub-patterns repeated—the number of repeated 
sub-patterns are gradually increased as they are incrementally found, allowing the repetitive TS pattern to be found 
as quickly as possible. 
 
This verification process, first, attempts to find the first repeated pixel value. It starts when the incoming pixel value 
𝑣𝑣𝑖𝑖 is determined to be (the first value of) the new candidate sub-pattern. It will find the previously created candidate 
sub-pattern 𝐏𝐏𝑘𝑘′  of which averaged pixel value (𝑝𝑝𝑣𝑣′/ 𝑝𝑝ℎ′) is the same or approximately the same as this pixel value 𝑣𝑣𝑖𝑖, 
i.e. searching for 𝐏𝐏𝑘𝑘′  that satisfies 
 

 
𝑎𝑎𝑎𝑎𝑎𝑎 𝑚𝑚𝑖𝑖𝑚𝑚

𝐏𝐏𝑘𝑘′
�𝑣𝑣𝑖𝑖 −

𝑝𝑝𝑘𝑘
𝑣𝑣′

𝑝𝑝𝑘𝑘
ℎ′� < 𝜀𝜀𝑣𝑣, (5) 

 
where 𝜀𝜀𝑣𝑣 is a similarity tolerance (the same as used in (1)). If the pixel value 𝑣𝑣𝑖𝑖 is a repeat of the previous candidate 
sub-pattern 𝐏𝐏𝑘𝑘′  (i.e. the candidate sub-pattern that satisfies (5) is found); the hit count ℎ𝑘𝑘 is assigned a value of 1. In 
that case, the process successively checks each next value of that pixel—as soon as it appears in successive frame—
against the averaged pixel value of matched sub-pattern (here, 𝐏𝐏𝑘𝑘′ ); the hit count ℎ𝑘𝑘 is incremented by 1 every time 
they are successfully and continuously matched. 
 
During the ongoing process of confirming the repetition in the same sub-pattern 𝐏𝐏𝑘𝑘′ , if the hit count ℎ𝑘𝑘 is 
approximately equal to the number of frames in corresponding sub-pattern 𝐏𝐏𝑘𝑘′ , i.e. 
 
 �ℎ𝑘𝑘 − 𝑝𝑝𝑘𝑘ℎ

′� < 𝜀𝜀𝑐𝑐, (6) 
 
the incoming pixel value 𝑣𝑣𝑖𝑖( 𝑗𝑗 > 𝑖𝑖) will be compared to the averaged pixel value of both current candidate sub- 
patterns 𝐏𝐏𝑘𝑘′  and next candidate 𝐏𝐏𝑘𝑘+1′  (here 𝜀𝜀𝑐𝑐 is the length difference allowance of sub-pattern 𝐏𝐏𝑘𝑘′  and the current 
sub-pattern (of 𝑣𝑣) which are being compared). Successfully matching with either one of both sub-patterns, i.e. 
 

 �𝑣𝑣𝑗𝑗 −
𝑝𝑝𝑘𝑘
𝑣𝑣′

𝑝𝑝𝑘𝑘
ℎ′� < 𝜀𝜀𝑐𝑐 𝑜𝑜𝑎𝑎 �𝑣𝑣𝑗𝑗 −

𝑝𝑝𝑘𝑘+1
𝑣𝑣′

𝑝𝑝𝑘𝑘+1
ℎ′ � < 𝜀𝜀𝑐𝑐, (7) 

 
allows the process to continue verifying the ongoing repetition. 
 
In case that the incoming pixel value 𝑣𝑣𝑗𝑗 is successfully matched with the next candidate 𝐏𝐏𝑘𝑘+1′  (i.e. the right of (7) is 
true), it means that the next pixel value 𝑣𝑣𝑗𝑗+1 and hereafter must be compared to the averaged pixel value of sub-
pattern 𝐏𝐏𝑘𝑘+1′ . The new hit count ℎ𝑘𝑘+1 becomes active and is used for verifying the repetition of the candidate sub-
pattern 𝐏𝐏𝑘𝑘+1′ —the value of ℎ𝑘𝑘+1 is initialized to be 1. The same ‘incremental verification’ process is performed 
against the active sub-pattern 𝐏𝐏𝑘𝑘+1′ . 
 
The repetitive time series pattern is assumed to appear on the man-made device such as electronic billboard; the time 
series pattern, denoted by 𝐒𝐒 = [𝐏𝐏0 𝐏𝐏1. . .𝐏𝐏𝑛𝑛−1], will ordinarily repeat itself in a consecutive manner. Therefore the 
confirmation of repetitive TS pattern has to repeat the above-detailed verification—which is executed for each 
subsequent candidate sub-pattern—until the repeated series of candidate sub-patterns in the list 𝐒𝐒′ is found and the 
second series must immediately follow the first series that it repeat. For example, under the assumption that 
 

• the list of 𝑐𝑐 candidate sub-patterns being built and grown is 𝐒𝐒′ = [𝐏𝐏0′  𝐏𝐏1′ . . .𝐏𝐏𝑏𝑏−1′  𝐏𝐏𝑏𝑏′  𝐏𝐏𝑏𝑏+1′  . . .𝐏𝐏𝑐𝑐−2′  𝐏𝐏𝑐𝑐−1′ ], 
• there exists the series of candidate sub-patterns in the list 𝐒𝐒′

 
that is repeated one after the other,  

• the first sub-pattern that is found repeated is 𝐏𝐏0′  , 
• its counterpart which repeats 𝐏𝐏0′  is 𝐏𝐏𝑏𝑏′  , 
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• the next matched pair is 𝐏𝐏1′  and 𝐏𝐏𝑏𝑏+1′
 and so on,  

the last sub-pattern in the series of TS pattern must be 𝐏𝐏𝑏𝑏−1′  —in order to have the repeated TS pattern immediately 
follow each other. In this case,[𝐏𝐏0′  𝐏𝐏1′ . . .𝐏𝐏𝑏𝑏−1′ ], becomes the candidate of repetitive TS pattern. 
 
The candidate TS pattern will be established after the counterpart of 𝐏𝐏𝑏𝑏−1′  is successfully identified—normally at 
one image frame after the end of prospective counterpart which is denoted by sub-pattern 𝐏𝐏𝑐𝑐−2′ . We must check the 
validity of candidate TS pattern by verifying if the length of last sub-pattern 𝐏𝐏𝑏𝑏−1′  is approximately equal to that of 
𝐏𝐏𝑐𝑐−2′ . It is done by detecting the next sub-pattern 𝐏𝐏𝑐𝑐−1′ . which help confirm the repeat of last sub-pattern in the 
candidate TS pattern. That is why the whole candidate TS pattern will be detected—if it exists—when the list 𝐒𝐒′ has 
𝑐𝑐 = 2𝑚𝑚 + 1 candidate sub-patterns (where 𝑚𝑚 is the number of sub-patterns in the TS pattern). Note that line 11 of 
Algorithm 1 embeds all process explained above. 
 
It is worthwhile to mention that the merging of short candidate sub-patterns, however, is not to be done during the 
process of finding a periodic repetition (matching incoming pixel values to previous sub-patterns); this is to avoid 
any delay in the detection of TS pattern. Here, we just ignore them (the short candidate sub-pattern) if it is too short 
(its period is less than 𝜀𝜀ℎ). In other words, when the discrepancy between the incoming pixel value and the averaged 
pixel value of corresponding sub-pattern is found, we will not immediately cancel the ongoing verification. The 
process allows some matching failures to occur consecutively; if the incoming pixel values do not repeat their 
corresponding sub-pattern for 𝜀𝜀ℎ consecutive frames, the ongoing verification will be cancelled. However, the next 
verification will be restarted promptly. It will try finding another first pair of sub-patterns and its repeated pixel 
value; and resuming the subsequent verification if the new first match was found. This iterative process will 
continue until the TS pattern is found or it runs out of time (i.e. the verification has been done for more than 𝑇𝑇𝑡𝑡𝑡𝑡 
frames) (line 12). 
 
 
3.4 Building a Repetitive Time Series Background Model 
 
The repetitive time series background model (TS model) is built for each pixel location if the ‘candidate’ TS pattern 
was found. The model is initially built by averaging the ‘candidate’ TS pattern (e.g. [𝐏𝐏0′  𝐏𝐏1′ . . .𝐏𝐏𝑛𝑛−1′ ]) and the list of 
sub-patterns (e.g. [𝐏𝐏𝑛𝑛′  𝐏𝐏𝑛𝑛+1′ . . .𝐏𝐏2𝑛𝑛−1′ ]) that repeats the ‘candidate’ TS pattern. Therefore, the repetitive TS 
background model is 
 
 𝐒𝐒 = [𝐏𝐏0 𝐏𝐏1. . .𝐏𝐏𝑛𝑛−1], (8) 
 
where 
 

 𝐏𝐏𝑖𝑖 =
𝐏𝐏𝑖𝑖′ + 𝐏𝐏𝑛𝑛+𝑖𝑖′

2
 . (9) 

 
Note that the accumulated (background) pixel value 𝑝𝑝𝑘𝑘𝑣𝑣 and the number of accumulate frames 𝑝𝑝𝑘𝑘ℎ of each sub-pattern 
𝐏𝐏𝑖𝑖 in TS model 𝐒𝐒 are updated by weighted averaging with the next cycle which successfully matches with the model 
(i.e. no foreground is detected). 
 
 
3.5 Detecting a foreground on the region of TS pattern 
 
The foreground detector proposed in this paper is responsible for detecting a foreground on the region of repetitive 
time series pattern. Based on elapsed time from the last known sub-pattern, it predicts which sub-pattern of TS 
model will appear on each pixel of time series region; then compares the value of each pixel to the averaged pixel 
value of corresponding sub-pattern in TS model. The same principle used in ‘finding a periodic repetition’ 
(explained previously) is utilized in the foreground detection. The pixel of which value is judged to be 
approximately the same as its corresponding sub-pattern—by using the left equation of (7) (and the right equation if 
necessary)— will be classified as the background (strictly speaking, it is the repetitive time series background); the 
TS model is then updated by the ‘TS model update’ module (Fig. 2). Those pixels that fail in matching will 
classified as the foreground. As the duration of each sub-pattern in TS model may differ a bit from that of the same 
pattern appearing hereafter, the pixel value predicted from TS model around the transition point between two 
adjacent sub-patterns is allowed to be either one of the two sub-patterns. Strictly speaking, around the time of 
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changing from one sub-pattern to the next, the pixel value 𝑣𝑣 of current pixel is classified as background if it is 
similar to either the averaged pixel value of predicted  

 
 

Fig. 4. Four experimental video scenes. 
 
 
sub-pattern 𝐏𝐏𝑘𝑘 or that of the next sub-pattern 𝐏𝐏𝑘𝑘+1. Note that this is done by using (7). The process of foreground 
detection allows some failure in matching of current pixel value and the predicted sub-pattern—this is also done in 
‘finding a periodic repetition’. The proposed method employs a ‘time-delay detection’ which will judge that there is 
an object (foreground) on the pixel if and only if the matching fails consecutively for 𝜀𝜀ℎ frames. 
 
 
3.6 Post-processing 
 
There is a trade-off between a high true positive rate (TPR) and a low false positive rate (FPR)—the robust 
background model successfully detects a lot of foreground objects, on the other hand, tends to mistakenly verify 
some background pixels as the foregrounds. We opt for the high detection rate; many noises (false positives) 
inevitably appear as a result of detection. An illumination change is one of the causes of those noises. On the other 
hand, some foreground pixels similar to the background model are sometimes erroneously classified as the 
background—they become the hole inside the foreground region. The post-processing is done here to suppress those 
noises, and to fill the hole inside and the gap between the foregrounds. Morphological filters—opening followed by 
closing—are used in our methods. 
 
 
4.0 EXPERIMENTAL RESULTS AND DISCUSSION 
 
The video of size 320×240 pixels is used in our experiments; they were captured at 30 fps. Four places in the 
building were used in the experiments, each taken at different time (morning, noon, afternoon, and evening)— some 
snapshots are shown in Fig. 4. As shown in the bottom left image of Fig. 2 (the same scene as Fig. 4b), the scene 
consists of (i) static background (a wall, a floor, a chair, and a bulletin board); (ii) repetitive time series background 
(the display of electronic billboard); and (iii) foreground objects (a walking human). There are 5–8 advertising 
images which are being displayed repeatedly, in the same order, and by the same interval. Many people walk past in 
front of the billboard; sometimes one by one, occasionally walk in group. Experiments were done in two steps; (i) 
the classification of time series background; and (ii) the detection of foreground. We demonstrate the result mainly 
in the region of periodic time series background, sometimes in the remaining area in order to check if and how many 
there are false positives. The objective evaluation is measured in terms of seven metrics (as described in [8])—recall 
(Re), precision (Pr), specificity (Sp), F-measure (FM), false positive rate (FPR), false negative rate (FNR), and 
percentage of wrong classifications (PWC). The image results of foreground segmentation are also shown as 
subjective evaluation of our proposed method. 
 
 
4.1 Background Classification (Time Series Background and Other Background) 
 
Ground truths and image results of background classification on some test cases (here, scene #1 and #4) are shown 
in Fig. 5 and Table 2–3. Fig. 5 shows some (input) image frames from scene #1 (top row) and #4 (bottom row) in 
the 1𝑡𝑡𝑡𝑡 column. We expect to classify the area of electronic billboard (TV display) as a ‘time series background 
area’—its ground truth is shown as white pixels in the 3𝑟𝑟𝑟𝑟 column images. Other areas—most of them are static 
background—are shown in grey colour. The results of detecting the area of periodic time series pattern in scene #1 
and #4—using our proposed method with four image components (hue (H), saturation (S), value (V), and 
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illumination (Y) channels) and various tolerances 𝜀𝜀𝑣𝑣 for pixel similarity measurement—are shown in Table 2 and 3 
respectively. 
 
 

 
 
Fig. 5. Some image frames (1𝑡𝑡𝑡𝑡 column) from test cases (scenes) #1 (top row; bright illumination) and #4 (bottom 
row; quite dark). Expected results of time series background area detection (white pixels of the images in the 3𝑟𝑟𝑟𝑟 
column) and foreground detection on that area (white pixels of the images in the 4𝑡𝑡ℎ column) are also shown with 
the prospective ROI (2𝑛𝑛𝑟𝑟 column) of our method. Other areas which are not parts of time series background are 
shown in grey colour. Note that the images shown on the 1𝑡𝑡𝑡𝑡 column are from frame #4256 and #7254 of test cases 
#1 and #4 respectively. 
 
 
According to the results shown in Table 2 and 3, the detection of TS background area on V and Y channels provides 
better results than H and S channels. Both V and Y channels obtain the best result of 98.4% TPR in the TS 
background area and 0.9% FPR in the other areas when 𝜀𝜀𝑣𝑣=12. Less FPR in non-TS background area could be 
obtained with higher 𝜀𝜀𝑣𝑣, but the TPR in TS background area also drops approximately at the same ratio. 
 
Table 4 shows the averaged TPR of repetitive TS background detection on all scenes using our proposed method. 
Results of applying the proposed method to Y channel outperforms those of other image components (H, S, and V 
channels)—regardless of 𝜀𝜀𝑣𝑣 (tolerance for pixel similarity) value. It is worthwhile to mention that the averaged TPR 
becomes the highest value when applying the proposed detection method on Y channel of the scene with 𝜀𝜀𝑣𝑣 =16. 
 
We also examined how fast the proposed method will correctly detect the pixels on TS background area. Fig. 6 
shows the accumulated number of pixels (averaged over all scenes) which are correctly detected as TS background 
when the method is applied on V channel (Fig. 6a) and H channel (Fig. 6b). When the method is implemented 
without pre-processing step (shown in blue line), the detection is slower—especially with V channel—compared to 
the method that employs the pre-processing explained earlier. The speeds of successfully detecting 80% of TS pixels 
using V and H channel do not, however, differ much—they could cumulatively detect 80% of the TS background 
area at frame #3199 and #3206 respectively. 
 
In principle, the proposed method can detect most pixels in TS background area when those pixels show their TS 
patterns twice and the first sub-pattern once more. However, in practice, as shown in Fig. 6, the method starts 
perceiving many TS pixels around frame #3000 which is delayed about one period of sub-pattern. One possible 
cause of the delay is the discarding of first ‘candidate’ sub-pattern. We throw it away because it may not be a full 
period of the sub-pattern—its existence will cause an error in TS background detection. 
 
 
Table 2. Experimental results of time series background detection on test case #1. Four image components (hue (H), 
saturation (S), value (V), and illumination (Y) channels) and various tolerances 𝜀𝜀𝑣𝑣 for pixel similarity on each 
channel have been examined on TS background detection. 
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Table 3. Experimental results of time series background detection on test case #4. Four image components (hue (H), 
saturation (S), value (V), and illumination (Y) channels) and various tolerances 𝜀𝜀𝑣𝑣 for pixel similarity on each 
channel have been examined on TS background detection. 
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Table 4. Averaged TPR (true positive rate) of time series background detection when the proposed method is 
applied to all scenes. Results of detection on H, S, V, and Y channels are shown with various tolerances (𝜀𝜀𝑣𝑣) of pixel 
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value similarity. The best results of each image channel—when 𝜀𝜀𝑣𝑣 is varied—are shown in bold face; while the best 
channel that provides the highest TPR for each value of 𝜀𝜀𝑣𝑣 are shown in blue. 
 

 
 
 

 
 
Fig. 6. Accumulated number of pixels which are correctly classified as time series background—when the TS 
background detection is performed on V and Y channels. The blue line shows the result of detection without pre- 
processing; while the red line with pre-processing. Note that the results shown here are the average of detection 
results from all scenes. 
 
 
4.2 Foreground Detection 
 
Image results of foreground detection (or change detection) on the image frames of Fig. 5a (test case #1) and Fig. 5b 
(test case #4) are shown in Table 5 and Table 6 respectively. Ground truths are shown in the 4𝑡𝑡ℎ column of Fig. 5— 
foreground in white, TS background in black, and others in grey colour. The experiments show the results from four 
image components (hue (H), saturation (S), value (V), and illumination (Y) channels) with various tolerance 𝜀𝜀𝑣𝑣 for 
pixel similarity measurement. 
 
According to the results, the detection of foreground on V and Y channels is more accurate than H and S channels in 
the area of TS background—there are also less false positives in other areas. The post-processing applied for noise 
suppression helps decrease the scattered small dots of noise; and also fill the gap/hole. The best value of F-measure 
(about 0.8) is obtained when using V and Y channels with 𝜀𝜀𝑣𝑣=12–20 and utilizing the post-processing in foreground 
detection on test case #1 (the bright scene). Lower value of 𝜀𝜀𝑣𝑣, around 8–12, is required to obtain the best F-measure 
(about 0.9) in case of test case #4 (quite dark scene). From these results, the value of tolerance 𝜀𝜀𝑣𝑣 has to change 
according to the overall illumination in the scene—this kind of adaptiveness is required in order to keep the good 
detection result. Figs.7 and 8 show the average/min/max F-measure (FM) and average false positive rate (FPR) of 
foreground detection on time series background area with various tolerances (𝜀𝜀𝑣𝑣= ± 4 ~ ±40) for pixel value 
similarity. Good average F-measures are obtained when detecting foreground on V (shown in green) and Y (shown 
in red) channels, especially with pre- and post-processing (Fig. 7d) and when 𝜀𝜀𝑣𝑣= ± 12 ~ ±24. As for V and Y 
channels, the higher the 𝜀𝜀𝑣𝑣 value is, the smaller the F-measure variance of foreground detection becomes. On the 
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other hand, average FPR is the lowest when detecting foreground on H (shown in blue) and S (shown in black) 
channels, with 𝜀𝜀𝑣𝑣 = ± 4 (Fig. 8). A trade-off between the high FM versus the low FPR suggests— from Figs. 7 and 
8—that foreground detection is to be done on V or Y channel with pre- and post-processing and using the tolerance 
𝜀𝜀𝑣𝑣 of ±16 ~ ±24. 
 
 
Table 5. Experimental results of foreground detection on the image frame of Fig. 5a (test case #1). Four image 
components (hue (H), saturation (S), value (V), and illumination (Y) channels) and various tolerance 𝜀𝜀𝑣𝑣 for pixel 
similarity on each channel have been examined on foreground detection. The results without post-processing 
(morphological opening followed by closing) and with post-processing are shown in the column named ‘Unfiltered’ 
and ‘Filtered’ respectively. The pixels verified as a foreground are shown in white; a TS background in black; and 
other background area in grey colour. 
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Table 6. Experimental results of foreground detection on the image frame of Fig. 5b (test case #4). Four image 
components (hue (H), saturation (S), value (V), and illumination (Y) channels) and various tolerance 𝜀𝜀𝑣𝑣 for pixel 
similarity on each channel have been examined on foreground detection. The results without post-processing 
(morphological opening followed by closing) and with post-processing are shown in the column named ‘Unfiltered’ 
and ‘Filtered’ respectively. The pixels verified as a foreground are shown in white; a TS background in black; and 
other background area in grey colour. 
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Fig. 7. Average F-measure (FM) of foreground detection on TS background area with various tolerances (𝜀𝜀𝑣𝑣± 4 ~ 
±40) for pixel value similarity. Four results are shown— (a) without pre- and post-processing; (b) with pre-
processing but without post-processing; (c) without pre-processing but with post-processing; and (d) with pre- and 
post-processing. The average/min/max F-measures of foreground detection on H, S, V, and Y channels are shown in 
blue circle, black asterisk, green triangle, and red square respectively. 
 
 

 
 
Fig. 8. Average false positive rate (FPR) of foreground detection on TS background area with various tolerances 
(𝜀𝜀𝑣𝑣= ± 4 ~ ±40) for pixel value similarity. Four results are shown—(a) without pre- and post-processing; (b) with 
pre-processing but without post-processing; (c) without pre-processing but with post-processing; and (d) with pre- 
and post-processing. The average FPR of foreground detection on H, S, V, and Y channels are shown in blue circle, 
black asterisk, green triangle, and red square respectively. 
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Table 7 shows average performance of our proposed foreground detection. Recall (Re), precision (Pr), specificity 
(Sp), F-measure (FM), false positive rate (FPR), false negative rate (FNR), and percentage of wrong classification 
(PWC) are evaluated for all frames in the video—four image components (H, S, V, and Y channels) are examined 
while the pixel value tolerance is varied from ±4 ~ ±40. The best results for each metric are shown in blue; most of 
them (Re, Pr, FNR, and PWC) are with Y channel. Other two metrics (Sp and FPR) are just 0.001 worse than the 
best value. The last metric (FM) is 0.009 lower than the best value. Therefore, Y channel is a good choice for 
foreground detection. The best value of 𝜀𝜀𝑣𝑣 for all metrics in Y channel is difficult to be determined as there is a 
trade-off among them. However, the value between ±8 to ±28 looks quite promising in terms of objective and 
subjective results obtained so far. 
 
 
4.2.1 Foreground detection around the frame of sub-pattern transition 
 
Most background subtraction techniques have difficulties handling a repetitive time series background—particularly 
around the frame of transition from one sub-pattern (advertising image in case of electronic billboard) to another. 
The evaluation of FPR when applying the proposed foreground detection method on the area of time series 
background in each frame is shown in Fig. 9 (top row). As expected, the FPR around the frame that is about to 
display next sub-pattern, which sometimes shows the blending image of two sub-patterns, is significantly high 
(spikes in the graph, about 35%)—this happens when the proposed foreground detection method is implemented 
without ‘time-delay’. One example of such blending image is shown in Fig. 9—the image displayed in TS 
background area at frame #6290 (middle column of 2nd and 3rd row) is the blending of two sub-pattern images (one 
shown on the left, the other on the right). Without ‘time-delay’, many pixels (around 37.15%) in the TS background 
region at frame #6290 are mistakenly detected as foreground (middle image of 4th row). When the ‘time-delay 
detection’ is employed, the FPR in TS area of frame #6290 decreases to 0.19% (middle image of last row)—
approximately equals to FPR in the same area of normal frame (images on the left and the right of last row). 
 
 
4.2.2 Processing time 
 
The processing time required for running our foreground detection method has been measured and shown as the 
number of frames that our foreground detection can process in one second (fps). The measurement has been done on 
many scenes—the size of time series background area in the scene is varied from 160×120, 320×240, 640×480, 
720×480, 960×720 to 1280×720 pixels. Fig. 10 shows the measurement results of implementing the algorithm in 
one computer process (without multithreading or other optimization) and running that process on an Intel Pentium 
Core i7 2.40 GHz Processor. As expected, the number of frames that our method can process in one second is 
inversely proportional to the number of time series pixels in the scene; because the total processing time for one 
image frame is, in principle, equal to the number of TS pixels multiplied by the time required for processing one TS 
pixel. 
 
As shown in the results, the process can run at 25–30 fps or more when the size of time series background area is not 
larger than 640×480 pixels. If the size of TS background is the same as high-definition television (HDTV), i.e. 
1280×720 pixels, the process can run at 15 fps. 
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Table 7. Average performance of our foreground detection method when applied to all video scenes with various 
tolerances "v for pixel similarity measurement. Four image components (H, S, V, and Y channels) have been 
examined. The best results of each image channel—when "v is varied—are shown in bold face; while the best 
results of all image channel are shown in blue. 
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Fig. 9. (Test case #4) (top row:) False positive rate (FPR) of foreground detection on the area of repetitive time 
series background, particularly around the frame of sub-pattern transition. (left and right columns of 2nd and 3rd 
row:) Frame #6289 and #6291 display sub-patterns #3 and #4 respectively on TS background area (electronic 
billboard); (middle column of same rows:) while frame #6290 displays the blending of sub-patterns #3 and #4. 
(middle column of 4th row:) Ordinary method will detect those pixels in frame #6290 as foreground because these 
pixel values are not in the model. (middle column of last row:) By allowing some matching failures, the FPR in this 
area of the blending frame dramatically decreases. 
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Fig. 10. The number of frames that the proposed foreground detection method can process in one second (frames per 
second, fps) when the image has different amounts of time series pixel. 

 
 
4.3 Comparison of foreground object detection between our proposed methods combined with state-of-

the-art methods and the state-of-the-art methods alone 
 
This section presents the results of foreground object detection of images of which background had both non-time 
series change and time series change by our combined proposed method with five other state-of-the-art methods and 
the five state-of-the-art methods alone that were very capable of dealing with dynamic background issue [7, 8]: KDE 
[20], LBP [6], MoG [9], MultiCue [21], and ViBe[1]. The objective of this comparison was. The comparison was 
made on five sets of dynamic background test images from CD.NET [22] of which background had non-time series 
change and three sets of test images of which background had time series change mentioned in Section 4.0. 
Performance evaluation was done with the same seven standard evaluation metrics presented in Section 4.0. The 
parameters of all five state-of-the-art methods were set according to the reference values stated by the authors of the 
corresponding papers, while the parameters of our proposed method were set as follows: "v = 20 which is the value 
obtained from the test mentioned in [4.1, 4.2]; YCbCr color space; and single Y channel throughout the comparison. 
In order to make it easier to evaluate foreground object detection subjectively both for regions with dynamic 
background and static background, the comparison was made on detection of ground truth image only in the region 
with dynamic background of time series change. Results of foreground object detection of images that had non-time 
series change and time series change are presented in Section 4.3.1 and 4.3.2, respectively, and the comparative 
results of processing time of all tested methods are shown in Section 4.3.3 
 
 
4.3.1 Results of foreground object detection of images of which background had non-time series change 
 
In foreground object detection of images of which background had no time series change shown in Table 8, our 
proposed hybrid method and the other five state-of-the-art methods performed equally well because the images had 
no time series regions hence no successful detection of foreground objects in such regions. This result was a direct 
result of the procedure of our proposed method which also did not produce false positive in any other types of 
regions. 
 
 
4.3.2 Results of foreground object detection of images of which background had time series change 
 
Even though the performance of the hybrid of our proposed method with state-of-the-art methods on detecting 
foreground objects in images of which background had non-time series change was comparable to those of the state-
of-the-art methods alone as shown in Table 8, subjective evaluation of the images shown in Table 9 clearly shows 
that the state-of-the-art methods produced some false alarms in the regions with time series change, especially when 
there was a change to a new sub-pattern even if no foreground objects had appeared. This is because the state-of-the-
art methods relied only on the current existing sub-pattern for representation of background model, so every time 
there was a change to the sub-pattern, these methods instantly considered the new sub-pattern to be a foreground 
object. Moreover, the status of this foreground object remained until the new sub-pattern was updated to the 
background model of these methods. Therefore, if a foreground object appeared in the image while there was a 
change to a new sub-pattern, foreground object detection would be falsely detected. This is shown in the results of 
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foreground object detection shown in Table 10. On the contrary, our proposed hybrid method not only prevented 
false alarms when no foreground object existed but the shapes of the foreground objects that it was able to detect 
were nearly identical to Table 8. Results of foreground object detection by all tested methods on images of which 
background had both Non-time series change and Time series change. The best result of each method is shown in 
bold face. (note: ++ signifies the results from the hybrid of our proposed method with state-of-the-art methods) 
 

 
 

those of the actual foreground objects in the ground truth image as shown in Table 10. Comparative results of F-
measure and false positive rate on all test images are shown in Fig. 11. It can be seen that in the case of images that 
had time series change, our proposed method was able to reduce 96% of false positive while improve 45% of F-
measure. On the average among all of the methods tested, our proposed method was able to reduce 80% of false 
alarm while improve 28% of F-measure. 
 
4.3.3 Comparative results of processing time 
 
As for the comparative increase in processing time that our proposed method used, the increase was only less than 
one frame per second. To put it in terms of actual use, our proposed method was able to operate in real-time at an 
average of 16 frames per second. All of the comparative results for all tested methods are shown in Fig 12. 
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Table 9. Results of foreground object detection by all tested methods on images of which background had time 
series change and no change in sub-pattern as well as no existing foreground objects in the images. The pixels 
verified as a foreground are shown in white; a TS background in black; and non-ROI in grey colour. (note: ++ 
signifies the results from the hybrid of our proposed method with state-of-the-art methods) 
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Fig. 11. Comparative results of average F-Measure(a) and average false positive rate(b) by all tested methods on all 
test images 

 
 

 
 

Fig. 12. Comparative results of average processing time of all tested methods 
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Table 10. Results of foreground object detection by all tested methods on images of which background had time 
series change and no change in sub-pattern as well as some foreground objects in the images. The pixels verified as 
a foreground are shown in white; a TS background in black; and non-ROI in grey colour. (note: ++ signifies the 
results from the hybrid of our proposed method with state-of-the-art methods) 
 

 
 
 
5.0 CONCLUSION 
 
Vision-based foreground detection based on background subtraction approach always encounters the problem of 
dynamic background. Most state-of-the-art approaches have been proposed such that some degree of change in the 
background, e.g. swaying trees, is handled properly; the repetitive time series background, however, had not been 
addressed. To suppress an erroneous detection of those repeated temporal background as a foreground, some simply 
mark those area as “not a region of interest”; this method however creates a non-monitoring area in the surveillance 
system, which potentially becomes a serious problem with high security area. 
 
We proposed the method of time series background detection so as to overcome this problem. The method of 
foreground detection on those periodic changing background areas was also presented. Both methods can run 
concurrently on each pixel, and in parallel with any other state-of-the-art background-subtraction methodology 
which could perform well only with traditional background. Although the pre- and post-processing—the suppression 
of noise—cannot run per pixel, the proposed methods are able to run in real-time. 
 
The proposed method has been proved that it could accurately detect the area of repetitive time series background 
with only few numbers of false positives, especially when the V or Y channel of image is used in the detection. 
Average true positive rate (or recall) is 92.9% and average F-measure is 0.92 when the detection is done on Y 
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channel. Our proposed method could detect about 80% of the time series background area in the scene as soon as the 
time series pattern repeats itself and the first sub-pattern is shown once more. The tolerance used in judgment of 
pixel similarity (for verifying if it repeats previous sub-pattern) has been investigated; we found that the darker the 
scene is, the smaller the tolerance value should be used; otherwise false positives will increase. Therefore, this 
tolerance must be adaptive, i.e. change its value proportionately to the brightness of the scene. 
 
The proposed method of foreground detection in time series background area is also examined. The V and Y 
channels provide better results than H and S components—average F-measure and recall are about 0.70 ~ 0.85 
depending on the value of pixel similarity tolerance. There are only few false positives; the false positive rate is less 
than 1%. Erroneous foreground detection on the frame in which two advertising images are captured and blended, 
although not always happens, causes a false positive from time to time. We proposed a ‘time-delay detection’ which 
helps suppress this kind of foreground detection error—the false positive of foreground detection on the blending 
image (normally not kept in background model) reduces from 35% to the same rate as of other normal image (sub-
pattern), i.e. less than 1%. 
 
Although the proposed method was implemented in and experiments shown earlier were done by a single-threaded 
process, it can run at 25–30 fps when the quantity of pixels in time series background area is not larger than 
640×480 pixels. In case that there are 1280×720 pixels of time series background (as large as HD size), the method 
is still able to run at 15 fps. In addition, only the colour feature on a single channel of input frame was processed. 
Our proposed method outperformed the state-of-the-art methods tested in terms of processing time. 
 
Objective evaluations of foreground object detection capabilities of our proposed method and five state-of-the-art 
methods that are very good at dealing with dynamic background issue show that our proposed method was able to 
reduce over 80% of false positive in detection of foreground objects in images of which background had time series 
change and able to improve more than 20% of F-measure over the state-of-the-art methods. Since the state-of-the-art 
methods relied on only the current existing sub-pattern for representation of background model, every time there 
was a change to the sub-pattern, these methods instantly considered the new sub-pattern to be a foreground object 
thus creating a false alarm. In contrast, the proposed method did not produce false positive in the regions that were 
not time series region. Subjectively, it can be clearly seen that the detected foreground objects by our proposed 
method were nearly identical to those in the ground truth image. All of these positive results were obtained by using 
nearly the same processing time that the five state-of-the-art methods used. Moreover, it also did not produce false 
positive in the regions that were not time series region. Subjectively, it can be clearly seen that the detected 
foreground objects by our proposed method were nearly identical to those in the ground truth image. All of these 
positive results were obtained by using almost no different processing time from those used by the five state-of-the-
art methods. 
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